问题重述
问题1:降低硬件复杂度
在约束1下,优化DFT矩阵的分解,以最小化误差(RMSE)并减少乘法器的数量。
问题2:限制元素实部和虚部取值范围
在约束2下,优化DFT矩阵的分解,以最小化误差并考虑元素实部和虚部的取值范围。
问题3:同时限制稀疏性和取值范围
在同时满足约束1和2的条件下,优化DFT矩阵的分解,以最小化误差和硬件复杂度。
问题4:研究其他矩阵的分解方案
考虑多个DFT矩阵和非DFT矩阵的乘积,再次在约束1和2下优化分解,以最小化误差和硬件复杂度。
问题5:加入精度限制
在问题3的基础上,要求将精度限制在0.1以内(RMSE≤0.1),再次优化分解方案,以最小化硬件复杂度。
完整版内容在文末领取噢~
问题一
问题1的目标是降低硬件复杂度,通过优化DFT矩阵的分解,以最小化误差(RMSE)并减少乘法器的数量。我们可以通过以下建模思路来解决问题1:
首先,定义一些变量和参数:
- 设 N 为 DFT 矩阵的维度。
- 定义 DFT 矩阵为 ( F \mathbf{F} F),它是一个大小为 N × N 的复数矩阵。
- 定义 K 个矩阵分解后的矩阵为 ( M 1 , M 2 , … , M K \mathbf{M}_1, \mathbf{M}_2, \ldots, \mathbf{M}_K M1,M2,…,MK),每个 ( M i \mathbf{M}_i Mi) 是大小为 N × N 的矩阵。
- 定义 ( α i \alpha_i αi) 为矩阵 ( M i \mathbf{M}_i Mi) 中的实值缩放因子,用于调整误差。
- 定义 (q) 为乘法器的复杂度,它与乘法器的设计和输入数据的位宽相关。
接下来,我们可以建立一个数学模型,优化目标是最小化误差,并约束硬件复杂度:
最小化目标函数:
Minimize RMSE = 1 N 2 ∑ i , j ∣ F i j − ( ∑ k = 1 K α k M k i M k j ) ∣ 2 \text{Minimize } \text{RMSE} = \sqrt{\frac{1}{N^2}\sum_{i,j}|\mathbf{F}_{ij} - \left(\sum_{k=1}^{K}\alpha_k\mathbf{M}_{ki}\mathbf{M}_{kj}\right)|^2} Minimize RMSE=N21∑