铛铛!小秘籍来咯!
小秘籍团队独辟蹊径,运用等多目标规划等强大工具,构建了这一题的详细解答哦! 为大家量身打造创新解决方案。小秘籍团队,始终引领着建模问题求解的风潮。
抓紧小秘籍,我们出发吧~
完整内容可以在文章末尾领取!
第一个问题是关于如何为企业设计一个抽样检测方案,以确定零配件的次品率,确保检测次数尽可能少。其中需要考虑的两个情形是:
- 在95%的信度下认定零配件次品率超过标称值时,拒收该批零配件。
- 在90%的信度下认定零配件次品率不超过标称值时,接收该批零配件。
具体要求是根据给定的标称值(10%),提供一个针对这两个情形的抽样检测方案。
为了设计一个抽样检测方案以确定零配件的次品率,需要利用统计学的方法和公式。在此,我们将分别为两种情形建立适当的数学模型。
问题 1
1. 抽样方案设计
我们设定一个零配件批次的次品率为 p p p,根据供应商的声称,这个值不会超过10% (即 p ≤ 0.1 p \leq 0.1 p≤0.1)。为了进行检验,我们可以使用二项检验的方法。
设:
- n n n为抽样检测的样本数量。
- k k k为样本中次品的数量。
抽样计划要求进行以下两个测试:
- 在95%的信度下拒收次品率超过标称值的批次。
- 在90%的信度下接受次品率不超过标称值的批次。
(1) 95%信度下拒收批次
我们希望确定样本大小 n n n,使得在次品率为10% (即 p = 0.1 p=0.1 p=0.1)的条件下,没有超过 k k k个不合格品的概率至少为5%(即选择拒收批次的机会小于5%)。
采用二项分布:
P ( X ≤ k ) = ∑ i = 0 k ( n i ) ( p ) i ( 1 − p ) n − i . P(X \leq k) = \sum_{i=0}^{k} \binom{n}{i}(p)^i(1-p)^{n-i}. P(X≤k)=i=0∑k(in)(p)i(1−p)n−i.
在95%的信度下,我们有:
P ( X ≤ k ) ≤ 0.05 P(X \leq k) \leq 0.05 P(X≤k)≤0.05
根据正常近似,我们可以利用以下公式计算样本数:
n ≥ ( Z α ⋅ p ( 1 − p ) d ) 2 n \geq \left(\frac{Z_{\alpha} \cdot \sqrt{p(1-p)}}{d}\right)^2 n≥(dZα⋅p(1−p))2
其中:
- Z α Z_{\alpha} Zα为标准正态分布的临界值,对于95%的置信度, Z 0.05 ≈ 1.645 Z_{0.05} \approx 1.645 Z0.05≈1.645。
- d d d为可接受的误差范围,这里我们可以设定为0.1,即10%。
根据计算:
n ≥ ( 1.645 ⋅ 0.1 ( 1 − 0.1 ) 0.1 ) 2 = ( 1.645 ⋅ 0.9487 0.1 ) 2 ≈ ( 15.55 ) 2 ≈ 242.6 n \geq \left(\frac{1.645 \cdot \sqrt{0.1(1-0.1)}}{0.1}\right)^2 = \left(\frac{1.645 \cdot 0.9487}{0.1}\right)^2 \approx \left(15.55\right)^2 \approx 242.6 n≥(0.11.645⋅0.1(1−0.1))2=(0.11.645⋅0.9487)2≈(15.55)2≈242.6
因此,建议抽样数量 n ≥ 243 n \geq 243 n≥243。
(2) 90%信度下接受批次
其次,我们需要确定样本大小 n n n,使得在次品率为10% (即 p = 0.1 p=0.1 p=0.1)的条件下至少有一定数目的合格品的概率为90%。
可使用相同逻辑,选取合格品概率建立:
P ( X ≥ k ) = 1 − P ( X < k ) ≥ 0.9 P(X \geq k) = 1 - P(X < k) \geq 0.9 P(X≥k)=1−P(X<k)≥0.9
即
P ( X < k ) ≤ 0.1. P(X < k) \leq 0.1. P(X<k)≤0.1.
此时,我们选取的同样的样本量为:
n ≥ ( Z 0.1 ⋅ p ( 1 − p ) d ) 2 n \geq \left(\frac{Z_{0.1} \cdot \sqrt{p(1-p)}}{d}\right)^2 n≥(dZ0.1⋅p(1−p))2
这里, Z 0.1 ≈ 1.2816 Z_{0.1} \approx 1.2816 Z0.1≈1.2816,可得到:
n ≥ ( 1.2816 ⋅ 0.1 ( 1 − 0.1 ) 0.1 ) 2 = ( 1.2816 ⋅ 0.9487 0.1 ) 2 ≈ ( 12.14 ) 2 ≈ 147.4 n \geq \left(\frac{1.2816 \cdot \sqrt{0.1(1-0.1)}}{0.1}\right)^2 = \left(\frac{1.2816 \cdot 0.9487}{0.1}\right)^2 \approx \left(12.14\right)^2 \approx 147.4 n≥(0.11.2816⋅0.1(1−0.1))2=(0.11.2816⋅0.9487)2≈(12.14)2≈147.4
因此,建议抽样数量 n ≥ 148 n \geq 148 n≥148。
总结
- 在95%的信度下,拒收次品率超过标称值的批次,建议抽样数量为243;
- 在90%的信度下,接受次品率不超过标称值的批次,建议抽样数量为148。
通过以上抽样方案的设计,企业可以有效地决定是否接收供应商所提供的零配件批次。
在问题1中,我们需要为企业设计一个抽样检测方案,来验证零配件的次品率。我们将利用统计学中的假设检验方法。
设定假设:
- 原假设 H 0 H_0 H0: 次品率不超过标称值 p ≤ 0.10 p \leq 0.10 p≤0.10
- 备择假设 H 1 H_1 H1: 次品率超过标称值 p > 0.10 p > 0.10 p>0.10
我们会使用二项检验来进行假设的检验。
(1) 在95%的信度下拒收不合格零配件的方案:
根据正态近似(当样本量足够大时),我们可以使用正态分布来估计。
-
确定样本大小:
设 n n n 为抽样的数量, k k k 为抽样中不合格的数量。我们希望拒绝原假设 H 0 H_0 H0,即保证在95%的置信水平下我们能拒绝 H 0 H_0 H0。
对于二项分布 X B ( n , p ) X ~ B(n, p) X B(n,p),在 n n n个零配件中,发生错验的概率在5%时,求出 k k k 的临界值。通常,我们可以使用正态近似:
z = p ^ − p 0 p 0 ( 1 − p 0 ) n z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} z=np0(1−p0)p^−p0
其中, p 0 p_0 p0 为标称值(0.10), p ^ = k n \hat{p} = \frac{k}{n} p^=nk 为样本不合格比例。
对于95%的置信水平,设临界值:
z 0.05 ≈ 1.645 z_{0.05} \approx 1.645 z0.05≈1.645
当我们设定 p ^ = 0.10 + ϵ \hat{p} = 0.10 + \epsilon p^=0.10+ϵ 以避免接受被拒绝的原假设,假设 ϵ \epsilon ϵ 为一个小的正数,因此
z 0.05 = 0.10 + ϵ − 0.10 0.10 ⋅ 0.90 n z_{0.05} = \frac{0.10 + \epsilon - 0.10}{\sqrt{\frac{0.10 \cdot 0.90}{n}}} z0.05=n0.10⋅0.900.10+ϵ−0.10
解出 n n n 使得 z 0.05 z_{0.05} z0.05 的值大于 1.645,从而得到抽样的数量。
-
计算样本大小:
通过代入可以逐步推导样本量:
n ≥ ( z 0.05 ) 2 ⋅ p 0 ( 1 − p 0 ) ϵ 2 → n ≥ ( 1.645 ) 2 ⋅ 0.10 ⋅ 0.90 0.0 1 2 ≈ 239 n \geq \frac{(z_{0.05})^2 \cdot p_0(1 - p_0)}{\epsilon^2} \rightarrow n \geq \frac{(1.645)^2 \cdot 0.10 \cdot 0.90}{0.01^2} \approx 239 n≥ϵ2(z0.05