不等积分(待完善)

换元积分

分部积分

有理函数积分

无理函数积分

f ( x , y ) f(x,y) f(x,y) 是二元有理多项式函数,现讨论以下三种形式的不定积分
∫ f ( x , a + b x c + d x m ) d x ∫ f ( x , a x 2 + b x + c ) d x ∫ x m ( 1 + x n ) p d x \begin{aligned} &\int f\left(x, \sqrt[m]{\frac{a+bx}{c+dx}}\right)dx\\ &\int f\left(x, \sqrt{ax^2+bx+c}\right)dx\\ &\int x^m(1+x^n)^pdx \end{aligned} f(x,mc+dxa+bx )dxf(x,ax2+bx+c )dxxm(1+xn)pdx
( i ) (\text{i}) (i) t = ( a + b x ) / ( c + d x ) m t=\sqrt[m]{(a+bx)/(c+dx)} t=m(a+bx)/(c+dx) ,得 x = − ( a − c t m ) / ( b − d t m ) x=-(a-ct^m)/(b-dt^m) x=(actm)/(bdtm),然后可以化为对有理函数的不定积分。

( ii ) (\text{ii}) (ii) 对付这种积分的方法称作欧拉换元,分三种情况

( 1 ) \text(1) (1) a > 0 a>0 a>0

a x 2 + b x + c = t − a x \sqrt{ax^2+bx+c}=t-\sqrt{a}{x} ax2+bx+c =ta x,于是得 b x + c = t 2 − 2 a x t bx+c=t^2-2\sqrt{a}x t bx+c=t22a xt,整理得 x = ( t 2 − c ) / ( b + 2 a t ) x=(t^2-c)/({b+2\sqrt{a}t}) x=(t2c)/(b+2a t),然后可以化为对有理函数的积分。

( 2 ) (\text{2}) (2) c > 0 c>0 c>0

a x 2 + b x + c = t x − c \sqrt{ax^2+bx+c} = tx-c ax2+bx+c =txc,于是得 a x + b = t 2 x − 2 c t ax+b=t^2x-2ct ax+b=t2x2ct,整理得 x = ( 2 c t + b ) / ( t 2 − 1 ) x=(2ct+b)/(t^2-1) x=(2ct+b)/(t21),然后可以化为对有理函数的积分。

( 3 ) (3) (3) a x 2 + b x + c = a ( x − μ ) ( x − λ ) ax^2+bx+c=a(x-\mu)(x-\lambda) ax2+bx+c=a(xμ)(xλ)

a x 2 + b x + c = a t ( x − μ ) \sqrt{ax^2+bx+c} = \sqrt{a}t(x-\mu) ax2+bx+c =a t(xμ),于是得 ( x − λ ) = t ( x − μ ) (x-\lambda)=t(x-\mu) (xλ)=t(xμ),整理得 x = ( μ t − λ ) / ( t − 1 ) x=(\mu t-\lambda)/(t-1) x=(μtλ)/(t1),然后可以化为对有理函数的积分。

三角换元法

f ( x , y ) f(x,y) f(x,y) 是二元有理多项式函数,对 f ( sin ⁡ ( x ) , cos ⁡ ( x ) ) f(\sin(x), \cos(x)) f(sin(x),cos(x)) 的不定积分可以通过三角换元转化成有理函数的积分。

t = tan ⁡ x 2 t=\tan\frac{x}{2} t=tan2x,则
sin ⁡ x = 2 sin ⁡ x 2 cos ⁡ x 2 = 2 tan ⁡ x 2 1 + tan ⁡ 2 x 2 = 2 t 1 + t 2 cos ⁡ x = 2 cos ⁡ 2 x 2 − 1 = 1 − tan ⁡ 2 x 2 1 + tan ⁡ 2 x 2 = 1 − t 2 1 + t 2 \begin{aligned} \sin x=2\sin\frac{x}{2}\cos\frac{x}{2}=\frac{2\tan\frac{x}{2}}{1+\tan^2\frac{x}{2}}=\frac{2t}{1+t^2}\\ \cos x=2\cos^2\frac{x}{2}-1=\frac{1-\tan^2\frac{x}{2}}{1+\tan^2\frac{x}{2}}=\frac{1-t^2}{1+t^2}\\ \end{aligned} sinx=2sin2xcos2x=1+tan22x2tan2x=1+t22tcosx=2cos22x1=1+tan22x1tan22x=1+t21t2
因为 x = 2 arctan ⁡ t x=2\arctan t x=2arctant,所以
d x = 2 d t 1 + t 2 dx=\frac{2dt}{1+t^2} dx=1+t22dt
所以
∫ f ( sin ⁡ x , cos ⁡ x ) d x = ∫ f ( 2 t 1 + t 2 , 1 − t 2 1 + t 2 ) 2 1 + t 2 d t \int f(\sin x,\cos x)dx=\int f\left(\frac{2t}{1+t^2},\frac{1-t^2}{1+t^2}\right)\frac{2}{1+t^2}dt f(sinx,cosx)dx=f(1+t22t,1+t21t2)1+t22dt
这是有理函数积分。

积分表

一、
∫ a x d x = a x ln ⁡ a + C ∫ e x d x = e x + C ∫ 1 x d x = ln ⁡ ∣ x ∣ + C ∫ x x d x = x x ( 1 + ln ⁡ x ) + C ∫ sin ⁡ x d x = − cos ⁡ x + C ∫ cos ⁡ x d x = sin ⁡ x + C ∫ tan ⁡ x d x = ln ⁡ ∣ sec ⁡ x ∣ + C ∫ cot ⁡ x d x = ln ⁡ ∣ sin ⁡ x ∣ + C ∫ sec ⁡ x d c = ln ⁡ ∣ sec ⁡ x + tan ⁡ x ∣ + C ∫ csc ⁡ x d x = ln ⁡ ∣ csc ⁡ x − cot ⁡ x ∣ + C ∫ arcsin ⁡ x d x = x arcsin ⁡ x − 1 − x 2 + C ∫ arccos ⁡ x d x = x arccos ⁡ x + 1 − x 2 + C ∫ arctan ⁡ x d x = x arctan ⁡ x − ln ⁡ 1 + x 2 + C \begin{aligned} &\int a^xdx=\frac{a^x}{\ln a}+C\\ &\int e^xdx=e^x+C\\ &\int \frac{1}{x}dx=\ln|x|+C\\ &\int x^xdx = x^x(1+\ln x)+C\\ &\int \sin xdx = -\cos x+C\\ &\int \cos xdx = \sin x+C\\ &\int \tan xdx=\ln|\sec x|+C\\ &\int \cot xdx=\ln|\sin x|+C\\ &\int \sec xdc=\ln|\sec x+\tan x|+C\\ &\int \csc xdx=\ln|\csc x-\cot x|+C\\ &\int \arcsin xdx=x\arcsin x-\sqrt{1-x^2}+C\\ &\int \arccos xdx=x\arccos x+\sqrt{1-x^2}+C\\ &\int \arctan xdx=x\arctan x-\ln\sqrt{1+x^2}+C\\ \end{aligned} axdx=lnaax+Cexdx=ex+Cx1dx=lnx+Cxxdx=xx(1+lnx)+Csinxdx=cosx+Ccosxdx=sinx+Ctanxdx=lnsecx+Ccotxdx=lnsinx+Csecxdc=lnsecx+tanx+Ccscxdx=lncscxcotx+Carcsinxdx=xarcsinx1x2 +Carccosxdx=xarccosx+1x2 +Carctanxdx=xarctanxln1+x2 +C
二、
∫ 1 a 2 − x 2 d x = 1 2 ln ⁡ ∣ a + x a − x ∣ + C ∫ 1 a 2 + x 2 d x = 1 a arctan ⁡ x a + C ∫ 1 a 2 − x 2 d x = arcsin ⁡ x a + C ∫ a 2 − x 2 = x 2 a 2 − x 2 + a 2 2 arcsin ⁡ a 2 − x 2 + C ∫ 1 x 2 ± a 2 = ln ⁡ ∣ x + x 2 ± a 2 ∣ + C ∫ x 2 ± a 2 = x 2 x 2 ± a 2 + ln ⁡ ∣ x + x 2 ± a 2 ∣ + C \begin{aligned} &\int\frac{1}{a^2-x^2}dx=\frac{1}{2}\ln\left|\frac{a+x}{a-x}\right|+C\\ &\int\frac{1}{a^2+x^2}dx=\frac{1}{a}\arctan\frac{x}{a}+C\\ &\int\frac{1}{\sqrt{a^2-x^2}}dx=\arcsin\frac{x}{a}+C\\ &\int\sqrt{a^2-x^2}=\frac{x}{2}\sqrt{a^2-x^2}+\frac{a^2}{2}\arcsin\sqrt{a^2-x^2}+C\\ &\int\frac{1}{\sqrt{x^2\pm a^2}}=\ln\left|x+\sqrt{x^2\pm a^2}\right|+C\\ &\int{\sqrt{x^2\pm a^2}}=\frac{x}{2}\sqrt{x^2\pm a^2}+\ln\left|x+\sqrt{x^2\pm a^2}\right|+C\\ \end{aligned} a2x21dx=21lnaxa+x+Ca2+x21dx=a1arctanax+Ca2x2 1dx=arcsinax+Ca2x2 =2xa2x2 +2a2arcsina2x2 +Cx2±a2 1=lnx+x2±a2 +Cx2±a2 =2xx2±a2 +lnx+x2±a2 +C
三、
∫ tan ⁡ n x d x = tan ⁡ n − 1 x n − 1 − ∫ tan ⁡ n − 2 x d x ∫ tan ⁡ 2 n x d x = ∑ k = 1 n ( − 1 ) n − k tan ⁡ 2 k − 1 x 2 k − 1 + ( − 1 ) n x + C ∫ tan ⁡ 2 n + 1 x d x = ∑ k = 1 n ( − 1 ) n − k tan ⁡ 2 k x 2 k + ( − 1 ) n ln ⁡ ∣ sec ⁡ x ∣ + C ∫ cot ⁡ n x d x = − cot ⁡ n − 1 x n − 1 − ∫ cot ⁡ n − 2 x d x ∫ cot ⁡ 2 n x d x = − ∑ k = 1 n ( − 1 ) n − k cot ⁡ 2 k − 1 x 2 k − 1 + ( − 1 ) n x + C ∫ cot ⁡ 2 n + 1 x d x = − ∑ k = 1 n ( − 1 ) n − k cot ⁡ 2 k x 2 k + ( − 1 ) n ln ⁡ ∣ sin ⁡ x ∣ + C ∫ sin ⁡ n d x = sin ⁡ n − 1 x n cos ⁡ x + n − 1 n ∫ sin ⁡ n − 2 x d x ∫ cos ⁡ n d x = cos ⁡ n − 1 x n sin ⁡ x + n − 1 n ∫ cos ⁡ n − 2 x d x ∫ csc ⁡ n d x = − csc ⁡ n − 1 x n − 1 cos ⁡ x + n − 2 n − 1 ∫ csc ⁡ n − 2 x d x ∫ sec ⁡ n d x = sec ⁡ n − 1 x n − 1 sin ⁡ x + n − 2 n − 1 ∫ sec ⁡ n − 2 x d x \begin{aligned} &\int \tan^nxdx=\frac{\tan^{n-1}x}{n-1}-\int \tan^{n-2}xdx\\ &\int \tan^{2n}xdx=\sum_{k=1}^{n}(-1)^{n-k}\frac{\tan^{2k-1}x}{2k-1}+(-1)^nx+C\\ &\int \tan^{2n+1}xdx=\sum_{k=1}^{n}(-1)^{n-k}\frac{\tan^{2k}x}{2k}+(-1)^n\ln|\sec x|+C\\ &\int \cot^nxdx=-\frac{\cot^{n-1}x}{n-1}-\int \cot^{n-2}xdx\\ &\int \cot^{2n}xdx=-\sum_{k=1}^{n}(-1)^{n-k}\frac{\cot^{2k-1}x}{2k-1}+(-1)^nx+C\\ &\int \cot^{2n+1}xdx=-\sum_{k=1}^{n}(-1)^{n-k}\frac{\cot^{2k}x}{2k}+(-1)^n\ln|\sin x|+C\\ &\int \sin^n dx=\frac{\sin^{n-1}x}{n}\cos x+\frac{n-1}{n}\int \sin^{n-2}{x}dx\\ &\int \cos^n dx=\frac{\cos^{n-1}x}{n}\sin x+\frac{n-1}{n}\int \cos^{n-2}{x}dx\\ &\int \csc^n dx=-\frac{\csc^{n-1}x}{n-1}\cos x+\frac{n-2}{n-1}\int \csc^{n-2}x dx\\ &\int \sec^n dx=\frac{\sec^{n-1}x}{n-1}\sin x+\frac{n-2}{n-1}\int \sec^{n-2}x dx\\ \end{aligned} tannxdx=n1tann1xtann2xdxtan2nxdx=k=1n(1)nk2k1tan2k1x+(1)nx+Ctan2n+1xdx=k=1n(1)nk2ktan2kx+(1)nlnsecx+Ccotnxdx=n1cotn1xcotn2xdxcot2nxdx=k=1n(1)nk2k1cot2k1x+(1)nx+Ccot2n+1xdx=k=1n(1)nk2kcot2kx+(1)nlnsinx+Csinndx=nsinn1xcosx+nn1sinn2xdxcosndx=ncosn1xsinx+nn1cosn2xdxcscndx=n1cscn1xcosx+n1n2cscn2xdxsecndx=n1secn1xsinx+n1n2secn2xdx
四、

P ( x ) P(x) P(x) n n n 次多项式。
∫ e a x P ( x ) d x = e a x a ∑ k = 0 n ( − 1 ) k a k P ( k ) ( x ) + C ∫ e − x P ( x ) d x = − e − x ∑ k = 0 n P ( k ) ( x ) + C ∫ sin ⁡ ( w x ) P ( x ) d x = 1 w ∑ k = 0 n 1 w k sin ⁡ ( w x + ( k − 1 ) π 2 ) P ( k ) ( x ) + C ∫ e a x sin ⁡ w x d x = e a x a 2 + w 2 ( a sin ⁡ w x − w cos ⁡ w x ) \begin{aligned} &\int e^{ax}P(x)dx=\frac{e^{ax}}{a}\sum_{k=0}^{n}\frac{(-1)^k}{a^k}P^{(k)}(x)+C\\ &\int e^{-x}P(x)dx=-e^{-x}\sum_{k=0}^{n}P^{(k)}(x)+C\\ &\int \sin(wx)P(x)dx=\frac{1}{w}\sum_{k=0}^{n}\frac{1}{w^k}\sin(wx+\frac{(k-1)\pi}{2})P^{(k)}(x)+C\\ &\int e^{ax}\sin wxdx=\frac{e^{ax}}{a^2+w^2}(a\sin wx-w\cos wx) \end{aligned} eaxP(x)dx=aeaxk=0nak(1)kP(k)(x)+CexP(x)dx=exk=0nP(k)(x)+Csin(wx)P(x)dx=w1k=0nwk1sin(wx+2(k1)π)P(k)(x)+Ceaxsinwxdx=a2+w2eax(asinwxwcoswx)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值