LMDeploy量化部署LLM&VLM实践

一、前提知识:

大模型部署背景:

什么是模型部署:

部署面临的挑战:

受Transformer 架构影响:

常见GPU算力还能一战,但是显存带宽受限严重,时间花费在数据交换上居多

大模型部署方法:

模型参数以定点数或整数形式存储,实际计算时,反量化为浮点数去计算,再用定点数和整数去存储计算结果。量化会降低访存量。

LMDepoly简介:

二、项目实战

环境配置:

进入开发机,切换为终端(Terminal)模式。

创建conda环境,输入命令:

studio-conda -t lmdeploy -o pytorch-2.1.2

安装LMDeploy:

激活LMDeploy虚拟环境:

conda activate lmdeploy

安装0.3.0版本的lmdeploy:

pip install lmdeploy[all]==0.3.0

[all] 表示安装 lmdeploy 包的所有可选依赖项或功能

LMDeploy模型对话:

前提知识:

TurboMind是LMDeploy的一个推理引擎,仅支持推理TurboMind格式的模型,TurboMind在推理HF格式模型时,会自动将模型格式进行格式转换。

准备模型:

从开发机share文件夹创建模型软链接,输入命令:

cd ~
ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b /root/
# cp -r /root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b /root/

使用Transformer库运行模型:

(为后续对比做准备)

切换到VSCode,左边栏空白处右键,选择Open in Intergrated Terminal,打开终端

在终端中输入如下指令,新建pipeline_transformer.py

touch /root/pipeline_transformer.py

打开pipeline_transformer.py文件,填入代码:

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("/root/internlm2-chat-1_8b", trust_remote_code=True)

# Set `torch_dtype=torch.float16` to load model in float16, otherwise it will be loaded as float32 and cause OOM Error.
model = AutoModelForCausalLM.from_pretrained("/root/internlm2-chat-1_8b", torch_dtype=torch.float16, trust_remote_code=True).cuda()
model = model.eval()

inp = "hello"
print("[INPUT]", inp)
response, history = model.chat(tokenizer, inp, history=[])
print("[OUTPUT]", response)

inp = "please provide three suggestions about time management"
print("[INPUT]", inp)
response, history = model.chat(tokenizer, inp, history=history)
print("[OUTPUT]", response)

Ctrl+S键保存。

回到终端,激活conda环境:

conda activate lmdeploy

运行刚刚创建的python代码:

python /root/pipeline_transformer.py

结果如下:

稍后与LMDeploy的推理速度对比

使用LMDeploy与模型对话:

使用LMDepoly命令:

#lmdeploy chat [HF格式模型路径/TurboMind格式模型路径]
lmdeploy chat /root/internlm2-chat-1_8b

至此,通过LMDepoly以命令行方式与 InternLM2-Chat-1.8B 模型对话跑通。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值