高等数学 1.2数列的极限

数列极限的定义

数列的概念

如果按照某一法则,对每个 n ∈ N + n \in \mathbb{N}_+ nN+ ,对应着一个确定的实数 x n x_n xn ,这些实数 x n x_n xn 按照下标 n n n 从大到小排列得到的一个序列
x 1 , x 2 , x 3 , ⋯   , x n , ⋯   , x_1, x_2, x_3, \cdots, x_n, \cdots, x1,x2,x3,,xn,,
就叫数列,简记为 { x n } \{ x_n \} {xn}

数列中的每一个数叫做数列的,第 n n n x n x_n xn 叫做数列的一般项(或通项)。

数列极限的定义

定义:设 { x n } \{ x_n \} {xn} 为一数列,如果存在常数 a a a ,对于任意给定的正数 ε \varepsilon ε (不论它多么小),总存在正整数 N N N ,使得当 n > N n > N n>N 时,不等式
∣ x n − a ∣ < ε \left| x_n - a \right| < \varepsilon xna<ε
都成立,那么就称常数 a a a 是数列 { x n } \{ x_n \} {xn} 的极限,或者称数列 { x n } \{ x_n \} {xn} 收敛 a a a 记为
lim ⁡ n → ∞ x n = a \lim_{n \to \infty} x_n = a nlimxn=a

x n → a ( n → ∞ ) 。 x_n \to a \quad (n \to \infty) 。 xna(n)

收敛数列的性质

定理1(极限的唯一性):如果数列 { x n } \{ x_n \} {xn} 收敛,那么它的极限唯一。

证明:用反证法。假设同时有 x n → a x_n \to a xna x n → b x_n \to b xnb ,且 a < b a < b a<b 。取 ε = b − a 2 \varepsilon = \cfrac{b - a}{2} ε=2ba 。因为 lim ⁡ n → ∞ x n = a \lim \limits_{n \to \infty} x_n = a nlimxn=a ,故 ∃ \exists 正整数 N 1 N_1 N1 ,当 n > N 1 n > N_1 n>N1 时,不等式
∣ x n − a ∣ < b − a 2 (1) \vert x_n - a \vert < \cfrac{b - a}{2} \tag{1} xna<2ba(1)
都成立。同理,因为 lim ⁡ n → ∞ x n = b \lim \limits_{n \to \infty} x_n = b nlimxn=b ,故 ∃ \exists 正整数 N 2 N_2 N2 ,当 n > N 2 n > N_2 n>N2 时,不等式
∣ x n − b ∣ < b − a 2 (2) \vert x_n - b \vert < \cfrac{b - a}{2} \tag{2} xnb<2ba(2)
都成立。取 N = max ⁡ { N 1 , N 2 } N = \max \{ N_1 , N_2 \} N=max{N1,N2} ,则当 n > N n > N n>N ,时,(1)式及(2)式会同时成立,但由(1)式有 x n < a + b 2 x_n < \cfrac{a + b}{2} xn<2a+b ,由(2)式有 x n > a + b 2 x_n > \cfrac{a + b}{2} xn>2a+b 。这是不可能的。这矛盾证明了本定理的断言。

定理2(收敛数列的有界性):如果数列 { x n } \{ x_n \} {xn} 收敛,那么数列 { x n } \{ x_n \} {xn} 一定有界。

证明:因为数列 { x n } \{ x_n \} {xn} 收敛,设 lim ⁡ n → ∞ x n = a \lim \limits_{n \to \infty} x_n = a nlimxn=a 。根据数列极限的定义,对于 ε = 1 \varepsilon = 1 ε=1 ∃ \exists 正整数 N N N ,当 n > N n > N n>N 时,不等式
∣ x n − a ∣ < 1 \vert x_n - a \vert < 1 xna<1
都成立。于是,当 n > N n > N n>N 时,
∣ x n ∣ = ∣ ( x n − a ) + a ∣ ⩽ ∣ x n − a ∣ + ∣ a ∣ < 1 + ∣ a ∣ . | x_n | = | (x_n - a) + a | \leqslant | x_n - a | + | a | < 1 + | a | . xn=(xna)+axna+a<1+a∣.
M = max ⁡ { ∣ x 1 ∣ , ∣ x 2 ∣ , ⋯   , ∣ x N ∣ , 1 + ∣ a ∣ } M = \max{ \{ |x_1|, |x_2|, \cdots, |x_N|, 1+|a| \} } M=max{x1,x2,,xN,1+a} ,那么数列 { x n } \{ x_n \} {xn} 中的一切 x n x_n xn 都满足不等式
∣ x n ∣ ⩽ M . | x_n | \leqslant M . xnM.
这就证明了数列 { x n } \{ x_n \} {xn} 是有界的。

注:数列有界是数列收敛的必要条件,但不是充分条件。

定理3(收敛数列的保号性):如果 lim ⁡ n → ∞ x n = a \lim \limits_{n \to \infty} x_n = a nlimxn=a ,且 a > 0 a > 0 a>0 (或 a < 0 a < 0 a<0),那么存在正整数 N N N ,当 n > N n > N n>N 时,都有 x n > 0 x_n > 0 xn>0 (或 x n < 0 x_n < 0 xn<0)。

证明:就 a > 0 a > 0 a>0 的情形证明。由数列极限的定义,对 ε = a 2 > 0 \varepsilon = \cfrac{a}{2} > 0 ε=2a>0 ∃ \exists 正整数 N N N ,当 n > N n > N n>N 时,有
∣ x n − a ∣ < a 2 | x_n - a| < \cfrac{a}{2} xna<2a
从而
x n > a − a 2 = a 2 > 0. x_n > a - \cfrac{a}{2} = \cfrac{a}{2} > 0 . xn>a2a=2a>0.

推论:如果数列 { x n } \{ x_n \} {xn} 从某项起有 x n ⩾ 0 x_n \geqslant 0 xn0 (或 x n ⩽ 0 x_n \leqslant 0 xn0),且 lim ⁡ n → ∞ x n = a \lim \limits_{n \to \infty} x_n = a nlimxn=a ,那么 a ⩾ 0 a \geqslant 0 a0 (或 a ⩽ 0 a \leqslant 0 a0)。

定理4(收敛数列与其子数列间的关系):如果数列 { x n } \{ x_n \} {xn} 收敛于 a a a ,那么它的任一子数列也收敛,且极限也是 a a a

证明:由于 lim ⁡ n → ∞ x n = a \lim \limits_{n \to \infty} x_n = a nlimxn=a ,故 ∀ ε > 0 \forall \varepsilon > 0 ε>0 ∃ \exists 正整数 N N N ,当 n > N n > N n>N 时, ∣ x n − a ∣ < ε | x_n - a | < \varepsilon xna<ε 成立。
K = N K = N K=N ,则当 k > K k > K k>K 时, n k > n K = n N ⩾ N n_k > n_K = n_N \geqslant N nk>nK=nNN 。于是 ∣ x n k − a ∣ < ε | x_{n_k} - a | < \varepsilon xnka<ε 。这就证明了 lim ⁡ k → ∞ x n k = a \lim \limits_{k \to \infty} x_{n_k} = a klimxnk=a 。证毕。

原文链接:高等数学 1.2数列的极限

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值