高等数学 2.3 高阶导数

一般地,函数 y = f ( x ) y = f(x) y=f(x) 的导数 y   ′ = f   ′ ( x ) y\ ' = f\ ' (x) y =f (x) 仍然是 x x x 的函数。我们把 y   ′ = f   ′ ( x ) y\ ' = f\ ' (x) y =f (x) 的导数叫做函数 y = f ( x ) y = f(x) y=f(x) 的二阶导数,记作 y   ′ ′ y\ '' y ′′ d 2 y d x 2 \cfrac{\mathrm{d}^2 y}{\mathrm{d}x^2} dx2d2y ,即
y ′ ′ = ( y ′ ) ′ 或 d 2 y d x 2 = d d x ( d x d y ) y'' = (y')' \quad 或 \quad \cfrac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \cfrac{\mathrm{d}}{\mathrm{d}x} \left( \cfrac{\mathrm{d}x}{\mathrm{d}y} \right) y′′=(y)dx2d2y=dxd(dydx)
相应地,把 y = f ( x ) y = f(x) y=f(x) 的导数 f ′ ( x ) f'(x) f(x) 叫做函数 y = f ( x ) y = f(x) y=f(x)一阶导数

类似的,二阶导数的导数叫做三阶导数,三阶导数的导数叫做四阶导数 ⋯ ⋯ \cdots \cdots ⋯⋯ 一般地, ( n − 1 ) (n - 1) (n1) 阶导数的导数叫做 n n n 阶导数,分别记作
y ′ ′ ′ , y ( 4 ) , ⋯   , y ( n ) y''', y^{(4)}, \cdots , y^{(n)} y′′′,y(4),,y(n)

d 3 y d x 3 , d 4 y d x 4 , ⋯   , d n y d x n . \cfrac{\mathrm{d}^3y}{\mathrm{d}x^3}, \cfrac{\mathrm{d}^4y}{\mathrm{d}x^4}, \cdots , \cfrac{\mathrm{d}^ny}{\mathrm{d}x^n} . dx3d3y,dx4d4y,,dxndny.

函数 y = f ( x ) y = f(x) y=f(x) 具有 n n n 阶导数,也常说成函数 y = f ( x ) y = f(x) y=f(x) n n n 阶可导。如果函数 y = f ( x ) y = f(x) y=f(x) 在点 x x x 处具有 n n n 阶导数,那么 y = f ( x ) y = f(x) y=f(x) 在点 x x x 的某一去心邻域内必定具有一切低于 n n n 阶的导数。二阶及二阶以上的导数统称高阶导数

例 求正弦函数与余弦函数的 n n n 阶导数。
解:
y = sin ⁡ x , y ′ = cos ⁡ x = sin ⁡ ( x + π 2 ) , y ′ ′ = cos ⁡ ( x + π 2 ) = sin ⁡ ( x + π 2 + π 2 ) = sin ⁡ ( x + 2 ⋅ π 2 ) , y ′ ′ ′ = cos ⁡ ( x + 2 ⋅ π 2 ) = sin ⁡ ( x + 3 ⋅ π 2 ) , y ( 4 ) = cos ⁡ ( x + 3 ⋅ π 2 ) = sin ⁡ ( x + 4 ⋅ π 2 ) , \begin{align*} y &= \sin x, \\ y' &= \cos x = \sin{\left( x + \cfrac{\pi}{2} \right)} , \\ y'' &= \cos{\left( x + \cfrac{\pi}{2} \right)} = \sin{\left( x + \cfrac{\pi}{2} + \cfrac{\pi}{2} \right)} = \sin{\left( x + 2 \cdot \cfrac{\pi}{2} \right)}, \\ y''' &= \cos{\left( x + 2 \cdot \cfrac{\pi}{2} \right)} = \sin{\left( x + 3 \cdot \cfrac{\pi}{2} \right)}, \\ y^{(4)} &= \cos{\left( x + 3 \cdot \cfrac{\pi}{2} \right)} = \sin{\left( x + 4 \cdot \cfrac{\pi}{2} \right)}, \end{align*} yyy′′y′′′y(4)=sinx,=cosx=sin(x+2π),=cos(x+2π)=sin(x+2π+2π)=sin(x+22π),=cos(x+22π)=sin(x+32π),=cos(x+32π)=sin(x+42π),
一般地,可得
y ( n ) = sin ⁡ ( x + n ⋅ π 2 ) , y^{(n)} = \sin{\left( x + n \cdot \cfrac{\pi}{2} \right)} , y(n)=sin(x+n2π),

( sin ⁡ x ) ( n ) = sin ⁡ ( x + n ⋅ π 2 ) (\sin x)^{(n)} = \sin{\left( x + n \cdot \cfrac{\pi}{2} \right)} (sinx)(n)=sin(x+n2π)
用类似方法,可得
( cos ⁡ x ) ( n ) = cos ⁡ ( x + n ⋅ π 2 ) (\cos x)^{(n)} = \cos{\left( x + n \cdot \cfrac{\pi}{2} \right)} (cosx)(n)=cos(x+n2π)

例 求函数 y = ln ⁡ ( 1 + x ) y = \ln{(1 + x)} y=ln(1+x) n n n 阶导数。
解: y ′ = 1 1 + x y' = \cfrac{1}{1 + x} y=1+x1 , y ′ ′ = − 1 ( 1 + x ) 2 y'' = - \cfrac{1}{(1 + x)^2} y′′=(1+x)21 , y ′ ′ ′ = 1 ⋅ 2 ( 1 + x ) 3 y''' = \cfrac{1 \cdot 2}{(1 + x)^3} y′′′=(1+x)312 , y ( 4 ) = − 1 ⋅ 2 ⋅ 3 ( 1 + x ) 4 y^{(4)} = - \cfrac{1 \cdot 2 \cdot 3}{(1 + x)^4} y(4)=(1+x)4123 ,
一般地,可得
y ( n ) = ( − 1 ) n − 1 ( n − 1 ) ! ( 1 + x ) n , y^{(n)} = (-1)^{n - 1} \cfrac{(n - 1)!}{(1 + x)^n} , y(n)=(1)n1(1+x)n(n1)!,

[ ln ⁡ ( 1 + x ) ] ( n ) = ( − 1 ) n − 1 ( n − 1 ) ! ( 1 + x ) n [\ln{(1 + x)}]^{(n)} = (-1)^{n - 1} \cfrac{(n - 1)!}{(1 + x)^n} [ln(1+x)](n)=(1)n1(1+x)n(n1)!
通常规定 0 ! = 1 0! = 1 0!=1 ,所以这个公式当 n = 1 n = 1 n=1 时也成立。

例 求幂函数的 n n n 阶导数公式。
解:设 y = x μ ( μ 是任意常数 ) y = x^{\mu} (\mu 是任意常数) y=xμ(μ是任意常数) ,那么
y ′ = μ x μ − 1 , y ′ ′ = μ ( μ − 1 ) x μ − 2 , y ′ ′ ′ = μ ( μ − 1 ) ( μ − 2 ) x μ − 3 , y ( 4 ) = μ ( μ − 1 ) ( μ − 2 ) ( μ − 3 ) x μ − 4 , \begin{align*} y' &= \mu x^{\mu - 1} , \\ y'' &= \mu (\mu - 1) x^{\mu - 2} , \\ y''' &= \mu (\mu - 1) (\mu - 2) x^{\mu - 3} , \\ y^{(4)} &= \mu (\mu - 1) (\mu - 2) (\mu - 3) x^{\mu - 4} , \end{align*} yy′′y′′′y(4)=μxμ1,=μ(μ1)xμ2,=μ(μ1)(μ2)xμ3,=μ(μ1)(μ2)(μ3)xμ4,
一般地,可得
y ( n ) = μ ( μ − 1 ) ( μ − 2 ) ⋯ ( μ − n + 1 ) x μ − n , y^{(n)} = \mu (\mu - 1) (\mu - 2) \cdots (\mu - n + 1) x^{\mu - n} , y(n)=μ(μ1)(μ2)(μn+1)xμn,

( x μ ) ( n ) = μ ( μ − 1 ) ( μ − 2 ) ⋯ ( μ − n + 1 ) x μ − n . (x^{\mu})^{(n)} = \mu (\mu - 1) (\mu - 2) \cdots (\mu - n + 1) x^{\mu - n} . (xμ)(n)=μ(μ1)(μ2)(μn+1)xμn.
μ = n \mu = n μ=n 时,得到
( x n ) ( n ) = n ( n − 1 ) ( n − 2 ) ⋅   ⋯   ⋅ 3 ⋅ 2 ⋅ 1 = n ! , (x^{n})^{(n)} = n (n - 1) (n - 2) \cdot \ \cdots \ \cdot 3 \cdot 2 \cdot 1 = n! , (xn)(n)=n(n1)(n2)  321=n!,

( x n ) ( n + k ) = 0 ( k = 1 , 2 , ⋯   ) . (x^n)^{(n + k)} = 0 \quad (k = 1, 2, \cdots). (xn)(n+k)=0(k=1,2,).

如果函数 u = u ( x ) u = u(x) u=u(x) v = v ( x ) v = v(x) v=v(x) 都在点 x x x 处具有 n n n 阶导数,那么显然 u ( x ) ± v ( x ) u(x) \pm v(x) u(x)±v(x) 也在点 x x x 处具有 n n n 阶导数,且
( u ± v ) ( n ) = u ( n ) ± v ( n ) . (u \pm v)^{(n)} = u^{(n)} \pm v^{(n)} . (u±v)(n)=u(n)±v(n).
但乘积 u ( x ) v ( x ) u(x) v(x) u(x)v(x) n n n 阶导数不简单。由
( u v ) ′ = u ′ v + u v ′ (uv)' = u' v + u v' (uv)=uv+uv
首先得出
( u v ) ′ ′ = u ′ ′ v + 2 u ′ v ′ + u v ′ ′ , ( u v ) ′ ′ ′ = u ′ ′ ′ v + 3 u ′ ′ v ′ + 3 u ′ v ′ ′ + u v ′ ′ ′ . \begin{align*} (uv)'' &= u'' v + 2 u' v' + u v'' , \\ (uv)''' &= u''' v + 3 u'' v' + 3 u' v'' + u v''' . \end{align*} (uv)′′(uv)′′′=u′′v+2uv+uv′′,=u′′′v+3u′′v+3uv′′+uv′′′.
用数学归纳法可以证明
( u v ) ( n ) = u ( n ) v + n u ( n − 1 ) v ′ + n ( n − 1 ) 2 ! u ( n − 2 ) v ′ ′ + ⋯ + n ( n − 1 ) ⋯ ( n − k + 1 ) k ! u ( n − k ) v ( k ) + ⋯ + u v ( n ) . (uv)^{(n)} = u^{(n)} v + n u^{(n - 1)} v' + \cfrac{n (n - 1)}{2!} u^{(n - 2)} v'' + \cdots + \cfrac{n (n - 1) \cdots (n - k + 1)}{k!} u^{(n - k)} v^{(k)} + \cdots + u v^{(n)} . (uv)(n)=u(n)v+nu(n1)v+2!n(n1)u(n2)v′′++k!n(n1)(nk+1)u(nk)v(k)++uv(n).
上式称为莱布尼茨(Leibniz)公式。按二项式定理展开写成
( u + v ) n = u n v 0 + n u n − 1 v 1 + n ( n − 1 ) 2 ! u n − 2 v 2 + ⋯ + u 0 v n , (u + v)^n = u^n v^0 + n u^{n - 1} v^1 + \cfrac{n (n - 1)}{2!} u^{n -2} v^2 + \cdots + u^0 v^n , (u+v)n=unv0+nun1v1+2!n(n1)un2v2++u0vn,

( u + v ) n = ∑ k = 0 n C n k u n − k v k , (u + v)^n = \sum_{k = 0}^{n} C_n^k u^{n - k} v^k , (u+v)n=k=0nCnkunkvk,
k k k 次幂换成 k k k 阶导数(零阶导数理解为函数本身),再把左端的 u + v u + v u+v 换成 u v uv uv ,这样就得到
( u v ) n = ∑ k = 0 n C n k u ( n − k ) v ( k ) . (u v)^n = \sum_{k = 0}^{n} C_n^k u^{(n - k)} v^{(k)} . (uv)n=k=0nCnku(nk)v(k).

例 设 y = x 2 e 2 x y = x^2 \mathrm{e}^{2x} y=x2e2x ,求 y ( 20 ) y^{(20)} y(20)
解:设 u = e 2 x u = \mathrm{e}^{2x} u=e2x v = x 2 v = x^2 v=x2 ,则
u ( k ) = 2 k e 2 x ( k = 1 , 2 , ⋯   , 20 ) , v ′ = 2 x , v ′ ′ = 2 , v ( k ) = 0 ( k = 3 , 4 , ⋯   , 20 ) , u^{(k)} = 2^k \mathrm{e}^{2x} \quad (k = 1, 2, \cdots , 20) , \\ v' = 2x, \quad v'' = 2, \quad v^{(k)} = 0 \quad (k = 3, 4, \cdots , 20) , u(k)=2ke2x(k=1,2,,20),v=2x,v′′=2,v(k)=0(k=3,4,,20),
代入莱布尼茨公式,得
y ( 20 ) = ( x 2 e 2 x ) ( 20 ) = 2 20 e 2 x ⋅ x 2 + 20 ⋅ 2 19 e 2 x ⋅ 2 x + 20 ⋅ 19 2 ! 2 18 e 2 x ⋅ 2 = 2 20 e 2 x ( x 2 + 20 x + 95 ) \begin{align*} y^{(20)} &= (x^2 \mathrm{e}^{2x})^{(20)} \\ &= 2^{20} \mathrm{e}^{2x} \cdot x^2 + 20 \cdot 2^{19} \mathrm{e}^{2x} \cdot 2x + \cfrac{20 \cdot 19}{2!} 2^{18} \mathrm{e}^{2x} \cdot 2 \\ &= 2^{20} \mathrm{e}^{2x} (x^2 + 20x +95) \end{align*} y(20)=(x2e2x)(20)=220e2xx2+20219e2x2x+2!2019218e2x2=220e2x(x2+20x+95)

原文链接:高等数学 2.3 高阶导数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值