HMM
隐含马尔科夫模型(hidden Markov model, HMM), 可以用于标注问题的统计学习模型,
由隐藏的马尔科夫链,随机生成观测序列的过程,属于生成模型。
关于时序的概率模型
熵,最大熵,是基础。
熵:表现了系统所处状态的不确定性程度。平均信息量(平均不确定程度)。
最大熵:保留全部的不确定性,将风险降到最小。指数函数形式,形式漂亮简单,实际实现计算复杂。
马尔科夫链:状态空间中从一个状态到另一个状态的转换的随机过程。该过程具备“无记忆”的性质,下一状态的概率分布,只由当前状态决定。这种“无记忆性”叫做马尔科夫性质。
HMM中的三个元素: 初始化概率向量, 状态转移矩阵,观测矩阵。
HMM的两个基本假设: 1)当前时刻的状态只与上一时刻的状态有关, 2)当前时刻的观测只与当前时刻的状态有关。
HMM中的三个基本问题:
1. 概率计算问题: 给定模型(初始状态概率,状态转移矩阵,观测矩阵),和观测序列O,计算在该模型下,观测序列O出现的概率。
方法:前向-后向算法,通过递推高效的计算概率(直接引用前一时刻的计算结果, 避免了重复计算)。
**2. 学习问题:**给定观测序