HMM, CRF(还有EM、GMM)

HMM

隐含马尔科夫模型(hidden Markov model, HMM), 可以用于标注问题的统计学习模型,
由隐藏的马尔科夫链,随机生成观测序列的过程,属于生成模型
关于时序概率模型

熵,最大熵,是基础。
熵:表现了系统所处状态的不确定性程度。平均信息量(平均不确定程度)。
最大熵:保留全部的不确定性,将风险降到最小。指数函数形式,形式漂亮简单,实际实现计算复杂。

马尔科夫链:状态空间中从一个状态到另一个状态的转换的随机过程。该过程具备“无记忆”的性质,下一状态的概率分布,只由当前状态决定。这种“无记忆性”叫做马尔科夫性质。

HMM中的三个元素: 初始化概率向量, 状态转移矩阵,观测矩阵。

HMM的两个基本假设: 1)当前时刻的状态只与上一时刻的状态有关, 2)当前时刻的观测只与当前时刻的状态有关。

HMM中的三个基本问题:
1. 概率计算问题: 给定模型(初始状态概率,状态转移矩阵,观测矩阵),和观测序列O,计算在该模型下,观测序列O出现的概率。
方法:前向-后向算法,通过递推高效的计算概率(直接引用前一时刻的计算结果, 避免了重复计算)。

**2. 学习问题:**给定观测序

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值