第八章:微分方程
这一章一定要按类求解,这一章几乎可以和前面的所有章节结合,因为微分方程的解是一个函数,而前面几章都在研究函数。
第一节:微分方程的基本概念
基本概念
-
微分方程定义:含未知函数及其导数的方程叫做微分方程,又分为
-
常微分方程(本章内容)
-
偏微分方程(含有偏导的微分方程,有些超纲,但是一些资料书上有)
-
做个题就明白了:设 f ( x ) f(x) f(x)是 y ′ ′ − y ′ − e s i n x = 0 y^{''}-y^{'}-e^{sinx} = 0 y′′−y′−esinx=0解,且 f ′ ( x 0 ) = 0 f^{'}(x_0) = 0 f′(x0)=0,则 f ( x ) f(x) f(x)在()
A. x 0 x_0 x0的某邻域内单调增加,B. x 0 x_0 x0的某邻域内单调减少,C. x 0 x_0 x0处取得极小值,D. x 0 x_0 x0处取得极大值
-
-
阶:微分方程中导数的最高阶, F ( x , y , y ′ , y ′ ′ , y ( n ) ) = 0 是 n F(x,y,y^{'},y^{''},y^{(n)}) = 0是n F(x,y,y′,y′′,y(n))=0是n阶微分方程,一般考1阶或2阶,最高考3阶。
-
微分方程的解:使微分方程两边恒成立的函数
- 通解:含有独立(互不影响)的任意常数,且个数等于微分常数的阶数,小于大于都不行。
- 特解:不含任意常数的解
-
定解条件:确定通解中任意常数的条件,
- 一般是 y ( x 0 ) = y 0 , y ′ ( x 0 ) = y 0 ′ . . . y ( n − 1 ) ( x 0 ) = y 0 ( n − 1 ) y(x_0) = y_0,y^{'}(x_0) = y_0^{'}...y^{(n-1)}(x_0) = y_0^{(n-1)} y(x0)=y0,y′(x0)=y0′...y(n−1)(x0)=y0(n−1)
- 有些给的比较隐蔽,例如:曲线 y = y ( x ) 与 y = 2 x 在 x = 1 y = y(x)与y = 2^x在x = 1 y=y(x)与y=2x在x=1处相切,这个条件一次给了两个条件。
-
通解不一定是方程的全部解,例如: ( x + y ) y ′ = 0 有解 y = − x , y = C (x+y)y^{'} = 0有解y = -x,y = C (x+y)y′=0有解y=−x,y=C,后者是通解,但不包含前一个解。
第二节:微分方程的分类
基本概念
-
一阶微分方程的种类:一阶:指的是未知函数的最高阶的导数为1,形式: d y d x = f ( x , y ) \frac{dy}{dx} = f(x,y) dxdy=f(x,y)或 F ( x , y , y ′ ) = 0 F(x,y,y^{'}) = 0 F(x,y,y′)=0
-
可分离变量微分方程
- 定义:设 d y d x = f 1 ( x ) f 2 ( x ) \frac{dy}{dx} = f_{1}(x)f_{2}(x) dxdy=f1(x)f2(x),称 d y d x = f ( x , y ) \frac{dy}{dx} = f(x,y) dxdy=f(x,y)为可分离变量的微分方程。
-
判断:
1. 把 d y d x \frac{dy}{dx} dxdy放到一遍,变成 d y d x = f ( x , y ) \frac{dy}{dx} = f(x,y) dxdy=f(x,y)的形式,如果 f ( x , y ) f(x,y) f(x,y)能化为 f 1 ( x ) ⋅ f 2 ( y ) f_1(x)\cdot f_2(y) f1(x)⋅f2(y),就是可分离的,例如: d y d x = 2 x y ( √ ) \frac{dy}{dx} = 2xy(\surd) dxdy=2xy(√), d y d x = x + y ( × ) \frac{dy}{dx} = x+y(\times) dxdy=x+y(×) -
齐次微分方程:定义: d y d x = f ( x , y ) \frac{dy}{dx} = f(x,y) dxdy=f(x,y),若 d y d x = φ ( y x ) \frac{dy}{dx} = \varphi(\frac{y}{x}) dxdy=φ(xy),称为 d y d x = f ( x , y ) \frac{dy}{dx} = f(x,y) dxdy=f(x,y)为齐次微分方程
-
齐次微分方程的识别:
1. 分子分母各项次数不同,一定不是齐次微分方程,把导数写一边,另一边可以写成只含 y x \frac{y}{x} xy的形式,例如: d y d x = x + y 2 x y ( × ) \frac{dy}{dx} = \frac{x+y^2}{xy}(\times) dxdy=xyx+y2(×), d y d x = x y + y 2 x 2 + 1 ( √ ) \frac{dy}{dx} = \frac{xy+y^2}{x^2}+1(\surd) dxdy=x2xy+y2+1(√) -
一阶线性微分方程:线性的指的是,未知函数以及导数都是1次的。
- 定义:一阶线性微分方程的标准形式: d y d x + P ( x ) y = Q ( x ) \frac{dy}{dx}+P(x)y = Q(x) dxdy+P(x)y=Q(x)
- 若 P ( x ) = 0 P(x) = 0 P(x)=0,称为一阶齐次线性微分方程。
- 若 P ( x ) ≠ 0 P(x) \neq 0 P(x)=0,称为一阶非齐次线性微分方程。
-
-
可降阶高阶微分方程(通过降价,把高阶转化为低阶)的种类: y ( n ) = f ( x ) y^{(n)} = f(x) y(n)=f(x)型的微分方程:这种形式最简单,只需要逐层积分就可以了。
-
缺 y y y型: y ′ ′ = f ( x , y ′ ) y^{''} = f(x,y^{'}) y′′=f(x,y′)型的微分方程:所有的含 y y y(未知量)的放到一边,另一边如果是0,是齐次,不是0,非齐次
- F ( x , y , y ′ , y ′ ′ ) = 0 F(x,y,y^{'},y^{''}) = 0 F(x,y,y′,y′′)=0是一般形式,缺少 y y y的微分方程就是 F ( x , y ′ , y ′ ′ ) = 0 F(x,y^{'},y^{''}) = 0 F(x,y′,y′′)=0
- 缺 x x x型: y ′ ′ = f ( y , y ′ ) y^{''} = f(y,y^{'}) y′′=f(y,y′)型的微分方程: F ( x , y , y ′ , y ′ ′ ) = 0 F(x,y,y^{'},y^{''}) = 0 F(x,y,y′,y′′)=0是一般形式,缺少 x x x的微分方程就是 F ( y , y ′ , y ′ ′ ) = 0 F(y,y^{'},y^{''}) = 0 F(y,y′,y′′)=0
-
高阶线性微分方程解的结构:高阶线性微分方程解的指的是 y , y ′ , y ′ ′ , . . . y n y,y^{'},y^{''},...y^{n} y,y′,y′′,...yn都是一次的
-
相关性:设 y 1 ( x ) , y 2 ( x ) , . . . , y n ( x ) y_1(x),y_2(x),...,y_n(x) y1(x),y2(x),...,yn(x)是定义在区间 I I I上的 n n n个函数,若存在不全为 0 0 0的常数 k 1 , k 2 , . . . , k n k_1,k_2,...,k_n k1,k2,...,kn,使得 k 1 y 1 ( x ) + k 2 y 2 ( x ) + . . . + k n y n ( x ) = 0 , x ∈ I k_1y_1(x)+k_2y_2(x)+...+k_ny_n(x) = 0,x\in I k1y1(x)+k2y2(x)+...+knyn(x)=0,x∈I,则称这 n n n个函数在 I I I上线性相关,否则称为线性无关。
-
线性微分方程: n n n阶线性微分方程的一般形式为: y ( n ) + a 1 ( x ) y ( n − 1 ) + . . . + a n − 1 ( x ) y ′ + a n ( x ) y = f ( x ) y^{(n)}+a_1(x)y^{(n-1)}+...+a_{n-1}(x)y^{'}+a_n(x)y = f(x) y(n)+a1(x)y(n−1)+...+an−1(x)y′+an(x)y=f(x)
y ( n ) + a 1 ( x ) y ( n − 1 ) + . . . + a n − 1 ( x ) y ′ + a n y = 0 (1) y^{(n)}+a_1(x)y^{(n-1)}+...+a_{n-1}(x)y^{'}+a_ny = 0\tag{1}\\ y(n)+a1(x)y(n−1)+...+an−1(x)y′+any=0(1)
y ( n ) + a 1 ( x ) y ( n − 1 ) + . . . + a n − 1 ( x ) y ′ + a n y = f ( x ) (2) y^{(n)}+a_1(x)y^{(n-1)}+...+a_{n-1}(x)y^{'}+a_ny = f(x)\tag{2}\\ y(n)+a1(x)y(n−1)+...+an−1(x)y′+any=f(x)(2)
y ( n ) + a 1 ( x ) y ( n − 1 ) + . . . + a n − 1 ( x ) y ′ + a n y = f 1 ( x ) (3) y^{(n)}+a_1(x)y^{(n-1)}+...+a_{n-1}(x)y^{'}+a_ny = f_1(x)\tag{3}\\ y(n)+a1(x)y(n−1)+...+an−1(x)y′+any=f1(x)(3)
y ( n ) + a 1 ( x ) y ( n − 1 ) + . . . + a n − 1 ( x ) y ′ + a n y = f 2 ( x ) (4) y^{(n)}+a_1(x)y^{(n-1)}+...+a_{n-1}(x)y^{'}+a_ny = f_2(x)\tag{4}\\ y(n)+a1(x)y(n−1)+...+an−1(x)y′+any=f2(x)(4)
-
重要性质
-
一阶微分方程的解法:把方程式化为 d y d x = f ( x , y ) \frac{dy}{dx} = f(x,y) dxdy=f(x,y)然后按照类型求解
-
可分离变量微分方程:
- 步骤:
- 转化:把方程式化为 d y d x = f 1 ( x ) ⋅ f 2 ( y ) \frac{dy}{dx}= f_1(x)\cdot f_2(y) dxdy=f1(x)⋅f2(y)形式
- 分离:把所有含 y y y的放一起,所有含 x x x的放一起,化为 d y f 2 ( y ) = f 1 ( x ) d x \frac{dy}{f_2(y)} = f_1(x)dx f2(y)dy=f1(x)dx形式
- 积分:把左右两边积分: ∫ d y f 2 ( y ) = ∫ f 1 ( x ) d x \int\frac{dy}{f_2(y)} =\int f_1(x)dx ∫f2(y)dy=∫f1(x)dx 得到通解: G ( y ) = F ( x ) + C G(y) = F(x)+C G(y)=F(x)+C
- 例题:
- 求 d y d x = 1 + x + y 2 + x y 2 \frac{dy}{dx} = 1+x+y^2+xy^2 dxdy=1+x+y2+xy2得通解
- 求解微分方程 d y d x = 2 x y \frac{dy}{dx} = 2xy dxdy=2xy得通解(注意:这里要讨论 y = 0 y = 0 y=0的情况。同时还有一点,如果坐标或者右边积分出现 l n ln ln,积分后面的常数写成 l n C lnC lnC,这样化简更好看)
- x d y d x + y = x y d y d x x\frac{dy}{dx}+y= xy\frac{dy}{dx} xdxdy+y=xydxdy(注意 1 x \frac{1}{x} x1积分是 l n ∣ x ∣ ln|x| ln∣x∣)
- 步骤:
-
齐次微分方程:
- 步骤:
- 转化:把方程式化为 d y d x = f ( y x ) \frac{dy}{dx}= f(\frac{y}{x}) dxdy=f(xy)形式
- 换元:令 u = y x u = \frac{y}{x} u=xy,则 y = u x y = ux y=ux, d y d x = x d u d x + u \frac{dy}{dx} = x\frac{du}{dx}+u dxdy=xdxdu+u
- 带入:带入原方程: x d u d x + u = ρ ( u ) ⇒ d u d x = 1 x [ ρ ( u ) − u ] x\frac{du}{dx}+u = \rho(u)\Rightarrow \frac{du}{dx} = \frac{1}{x}[\rho(u)-u] xdxdu+u=ρ(u)⇒dxdu=x1[ρ(u)−u],变成可分离形式
- 分离:把所有含 u u u的放一起,所有含 x x x的放一起,化为 d u ρ ( u ) − u = 1 x d x \frac{du}{\rho(u)-u} = \frac{1}{x}dx ρ(u)−udu=x1dx形式
- 积分:两边积分得到通解: G ( u ) = l n ∣ x ∣ + l n C G(u) = ln|x|+lnC G(u)=ln∣x∣+lnC
- 换回 x x x:把 u = y x u = \frac{y}{x} u=xy带入 G ( u ) = l n ∣ x ∣ + l n C G(u) = ln|x|+lnC G(u)=ln∣x∣+lnC
- 例题:
- 解 d y d x = y x + ( y x ) 2 + 1 \frac{dy}{dx}= \frac{y}{x}+(\frac{y}{x})^2+1 dxdy=xy+(xy)2+1
- x d y d x = y ( l n y − l n x ) x\frac{dy}{dx} = y(lny-lnx) xdxdy=y(lny−lnx)
- 求 ( y + x 2 + y 2 ) d x − x d y = 0 (y+\sqrt{x^2+y^2})dx-xdy = 0 (y+x2+y2)dx−xdy=0满足 y ( 1 ) = 0 y(1) = 0 y(1)=0的特解,其中 x > 0 x>0 x>0
- 步骤:
-
一阶线性微分方程:
-
齐次步骤:
- 转化:化为 y ′ + P ( x ) y = 0 y^{'}+P(x)y = 0 y′+P(x)y=0形式
- 等价:两边同乘于 e ∫ P ( x ) d x 得 e ∫ P ( x ) d x y ′ + e ∫ P ( x ) d x P ( x ) y = 0 e^{\int P(x)dx}得e^{\int P(x)dx}y^{'}+e^{\int P(x)dx}P(x)y = 0 e∫P(x)dx得e∫P(x)dxy′+e∫P(x)dxP(x)y=0变为 [ e ∫ P ( x ) d x ⋅ y ] ′ = 0 [e^{\int P(x)dx}\cdot y]^{'} = 0 [e∫P(x)dx⋅y]′=0
- 积分:通解为 e ∫ P ( x ) d x ⋅ y = C ⇒ y = C ⋅ e − ∫ P ( x ) d x e^{\int P(x)dx}\cdot y = C \Rightarrow y = C\cdot e^{-\int P(x)dx} e∫P(x)dx⋅y=C⇒y=C⋅e−∫P(x)dx
- 结论: y = C ⋅ e − ∫ P ( x ) d x y = C\cdot e^{-\int P(x)dx} y=C⋅e−∫P(x)dx
-
非齐次步骤:
-
转化:化为 y ′ + P ( x ) y = Q ( x ) y^{'}+P(x)y = Q(x) y′+P(x)y=Q(x)形式
-
等价:两边同乘于 e ∫ P ( x ) d x 得 e ∫ P ( x ) d x y ′ + e ∫ P ( x ) d x P ( x ) y = e ∫ P ( x ) d x Q ( x ) e^{\int P(x)dx}得e^{\int P(x)dx}y^{'}+e^{\int P(x)dx}P(x)y = e^{\int P(x)dx}Q(x) e∫P(x)dx得e∫P(x)dxy′+e∫P(x)dxP(x)y=e∫P(x)dxQ(x)变为 [ e ∫ P ( x ) d x ⋅ y ] ′ = e ∫ P ( x ) d x Q ( x ) [e^{\int P(x)dx}\cdot y]^{'} = e^{\int P(x)dx}Q(x) [e∫P(x)dx⋅y]′=e∫P(x)dxQ(x)
-
积分:两边积分 e ∫ P ( x ) d x ⋅ y = ∫ Q ( x ) e ∫ P ( x ) d x d x + C ⇒ y = e − ∫ P ( x ) d x [ ∫ Q ( x ) e ∫ P ( x ) d x d x + C ] e^{\int P(x)dx}\cdot y = \int Q(x)e^{\int P(x)dx} dx+C\Rightarrow y = e^{-\int P(x)dx}[\int Q(x)e^{\int P(x)dx} dx+C] e∫P(x)dx⋅y=∫Q(x)e∫P(x)dxdx+C⇒y=e−∫P(x)dx[∫Q(x)e∫P(x)dxdx+C]
-
结论: y = e − ∫ P ( x ) d x [ ∫ Q ( x ) e ∫ P ( x ) d x d x + C ] y = e^{-\int P(x)dx}[\int Q(x)e^{\int P(x)dx} dx+C] y=e−∫P(x)dx[∫Q(x)e∫P(x)dxdx+C]
-
这个结论中的不定积分 e − ∫ P ( x ) d x e^{-\int P(x)dx} e−∫P(x)dx改成变限积分 e − ∫ a x P ( t ) d t e^{-\int^x_a P(t)dt} e−∫axP(t)dt,类似的, ∫ Q ( t ) e ∫ P ( x ) d x d x \int Q(t)e^{\int P(x)dx}dx ∫Q(t)e∫P(x)dxdx,也可以化为 ∫ a x Q ( t ) e ∫ P ( x ) d x d t \int^x_a Q(t)e^{\int P(x)dx}dt ∫axQ(t)e∫P(x)dxdt,因为反正都是求原函数,不定积分是一种原函数,变现积分也是一种原函数,因此可以互用。
-
-
例题:
- 求解 y ′ − 2 x y = − 1 y^{'}-\frac{2}{x}y = -1 y′−x2y=−1通解
- d y d x = 2 x y \frac{dy}{dx} = 2xy dxdy=2xy(当成齐次方程作就不用考虑 y y y是否等于0了)
- 设 y = y ( x ) y = y(x) y=y(x)满足 Δ y = y 1 + x 2 Δ x + o ( Δ x ) , y ( 0 ) = π , 求 y ( x ) \Delta y = \frac{y}{1+x^2}\Delta x+o(\Delta x),y(0) = \pi,求y(x) Δy=1+x2yΔx+o(Δx),y(0)=π,求y(x)。(提示:导数的定义 y ′ = lim Δ x → 0 Δ y Δ x , lim Δ x → 0 o ( Δ x ) Δ x = 0 y^{'} = \lim\limits_{\Delta x\to 0}\frac{\Delta y}{\Delta x},\lim\limits_{\Delta x \to 0}\frac{o(\Delta x)}{\Delta x} = 0 y′=Δx→0limΔxΔy,Δx→0limΔxo(Δx)=0)
- ( y − x 3 ) d x − 2 x d y = 0 (y-x^3)dx-2xdy = 0 (y−x3)dx−2xdy=0
- 设 f ( x ) f(x) f(x)为连续函数,求初值问题 { y ′ + a y = f ( x ) y ∣ x = 0 = 0 \begin{cases}y^{'}+ay = f(x)\\y|_{x =0} = 0\end{cases} {y′+ay=f(x)y∣x=0=0的解 y ( x ) y(x) y(x),其中 a > 0 a>0 a>0,若 ∣ f ( x ) ∣ ≤ k ( k 为常数 ) |f(x)|\le k(k为常数) ∣f(x)∣≤k(k为常数),证明:当 x ≥ 0 x\ge 0 x≥0时,有 ∣ y ( x ) ∣ ≤ k a ( 1 − e − a x ) |y(x)|\le \frac{k}{a}(1-e^{-ax}) ∣y(x)∣≤ak(1−e−ax)
-
-
无特定类型(以上类型都不是)
-
改变变量:
-
步骤:
- 改变求导对象: d y d x = f 1 ( x , y ) \frac{dy}{dx} = f_1(x,y) dxdy=f1(x,y)变为 d x d y = f 2 ( x , y ) \frac{dx}{dy} = f_2(x,y) dydx=f2(x,y),把 x x x当函数 y y y当自变量
- 按照所属类型求解,求解得 x = x ( y ) x = x(y) x=x(y)
- 如果可以的话,把 x = x ( y ) x = x(y) x=x(y)化为 y = y ( x ) y = y(x) y=y(x)
-
例题:
- 求 y ′ = 1 2 x − y 2 y^{'} = \frac{1}{2x-y^2} y′=2x−y21的通解
- 求微分方程 x y ′ = x 2 − y 2 + y , ( x > 0 ) xy^{'} = \sqrt{x^2-y^2}+y,(x>0) xy′=x2−y2+y,(x>0)的通解
- 2 y d x + ( y 3 − x ) d y = 0 2ydx+(y^3-x)dy = 0 2ydx+(y3−x)dy=0
-
-
换元:适用于把导数放左边,右边是关于 a x + b y 或 x y ax+by或xy ax+by或xy的函数,令 u = a x + b y u= ax+by u=ax+by或 u = x y u = xy u=xy,用 u u u把 y y y换掉。
- 步骤:把令 u = f ( x , y ) u = f(x,y) u=f(x,y),得出 y = g ( u , x ) y = g(u,x) y=g(u,x),换掉 x , y x,y x,y的其中一个,然后求解
- 例题:
- 求微分方程 d y d x = 1 ( x + y ) 2 \frac{dy}{dx} = \frac{1}{(x+y)^2} dxdy=(x+y)21的通解。
-
-
-
可降阶高阶微分方程的解法:
- y ( n ) = f ( x ) y^{(n)} = f(x) y(n)=f(x)型:最简单,方法是逐次积分
- 缺
y
y
y型:
y
′
′
=
f
(
x
,
y
′
)
y^{''} = f(x,y^{'})
y′′=f(x,y′)型的微分方程
- 解法一:
- 换元计算:令 y ’ = p , y^{’} = p, y’=p,则 y ′ ′ = d y ′ d x y^{''} = \frac{dy^{'}}{dx} y′′=dxdy′,带回原方程得: d p d x = f ( x , p ) \frac{dp}{dx} = f(x,p) dxdp=f(x,p),求解 p = p ( x ) + C 1 p = p(x)+C_1 p=p(x)+C1
- 积分: y ′ = p ( x ) + C 1 y^{'} = p(x)+C_1 y′=p(x)+C1再积分得 y = ∫ p ( x ) + C 1 d x y = \int p(x)+C_1dx y=∫p(x)+C1dx
- 解法二:微分法(不通用)
- 凑 f 1 ( x ) y ′ ′ ± f 2 ( x ) y ’ = 0 f_1(x)y^{''}\pm f_2(x)y^{’} = 0 f1(x)y′′±f2(x)y’=0,如果 f 1 ′ ( x ) = f 2 ( x ) f^{'}_1(x) = f_2(x) f1′(x)=f2(x),则可以用微分法,如果不是,不能用微分法
- 凑 [ y ′ f 1 ( x ) ] ′ = 0 , 或 [ f 1 ( x ) y ′ ] ′ = 0 [\frac{y^{'}}{f_1(x)}]^{'} = 0,或[f_1(x)y^{'}]^{'} = 0 [f1(x)y′]′=0,或[f1(x)y′]′=0
- 两边积分得 y ′ f 1 ( x ) = C , 或 f 1 ( x ) y ′ = C \frac{y^{'}}{f_1(x)} = C,或f_1(x)y^{'} = C f1(x)y′=C,或f1(x)y′=C,求解出 y ′ y^{'} y′
- 再对 y ′ y^{'} y′积分,得 y y y
- 例题:
- 求解 ( 1 + x 2 ) y ′ ′ = 2 x y ′ , y ( 0 ) = 1 , y ′ ( 0 ) = 3 (1+x^2)y^{''} = 2xy^{'},y(0) = 1,y^{'}(0) = 3 (1+x2)y′′=2xy′,y(0)=1,y′(0)=3(用两种方法作)
- 解法一:
- 缺
x
x
x型:
y
′
′
=
f
(
y
,
y
′
)
y^{''} = f(y,y^{'})
y′′=f(y,y′)型的微分方程
- 解法一:
- 换元计算:令 y ′ = p y^{'} = p y′=p,则 y ′ ′ = d y ′ d x = d p d y ⋅ d y d x = d p d y ⋅ y ′ = d p d y ⋅ p y^{''} = \frac{dy^{'}}{dx} = \frac{dp}{dy}\cdot \frac{dy}{dx} = \frac{dp}{dy}\cdot y^{'} = \frac{dp}{dy}\cdot p y′′=dxdy′=dydp⋅dxdy=dydp⋅y′=dydp⋅p,带回原方程得: d p d y p = f ( y , p ) \frac{dp}{dy}p = f(y,p) dydpp=f(y,p),解出 p = p ( y ) + C 1 p = p(y)+C_1 p=p(y)+C1
- 积分: y ′ = d y d x = p ( x ) + C 1 y^{'}=\frac{dy}{dx} = p(x)+C_1 y′=dxdy=p(x)+C1是一个可分离变量类型的,按照可分离变量类型的方法来解。
- 解法二:
- 凑 f 1 ( y ) y ′ ′ ± f 2 ( y , y ′ ) y ’ = 0 f_1(y)y^{''}\pm f_2(y,y^{'})y^{’} = 0 f1(y)y′′±f2(y,y′)y’=0,如果 f 1 ′ ( y ) = f 2 ( y , y ′ ) f^{'}_1(y) = f_2(y,y^{'}) f1′(y)=f2(y,y′),则可以用微分法,如果不是,不能用微分法
- 凑 [ y ′ f 1 ( y ) ] ′ = 0 , 或 [ f 1 ( y ) y ′ ] ′ = 0 [\frac{y^{'}}{f_1(y)}]^{'} = 0,或[f_1(y)y^{'}]^{'} = 0 [f1(y)y′]′=0,或[f1(y)y′]′=0
- 两边积分得 y ′ f 1 ( y ) = C , 或 f 1 ( y ) y ′ = C \frac{y^{'}}{f_1(y)} = C,或f_1(y)y^{'} = C f1(y)y′=C,或f1(y)y′=C,求解出 y ′ y^{'} y′
- 再对 y ′ y^{'} y′积分,得 y y y
- 例题:
- 求解 y y ′ ′ = y ′ 2 yy^{''} = y^{'2} yy′′=y′2,满足初始条件 y ( 0 ) = y ′ ( 0 ) = 1 y(0) = y^{'}(0) = 1 y(0)=y′(0)=1的特解。
- 解法一:
-
高阶线性微分方程的结论:
-
结论:
- 设 φ 1 ( x ) , φ 2 ( x ) , . . . , φ s ( x ) \varphi_1(x),\varphi_{2}(x),...,\varphi_s(x) φ1(x),φ2(x),...,φs(x)为 ( 1 ) (1) (1)的一组解,则 k 1 φ 1 ( x ) + k 2 φ 2 ( x ) , . . . , k s φ s ( x ) k_1\varphi_1(x)+k_2\varphi_2(x),...,k_s\varphi_s(x) k1φ1(x)+k2φ2(x),...,ksφs(x)为方程 ( 1 ) (1) (1)的解。
- 若 φ 1 ( x ) , φ 2 ( x ) \varphi_1(x),\varphi_2(x) φ1(x),φ2(x)分别为 ( 1 ) , ( 2 ) (1),(2) (1),(2)的两个解,则 φ 1 ( x ) + φ 2 ( x ) 为 ( 2 ) \varphi_1(x)+\varphi_2(x)为(2) φ1(x)+φ2(x)为(2)的解
- 若 φ 1 ( x ) , φ 2 ( x ) \varphi_1(x),\varphi_2(x) φ1(x),φ2(x)为 ( 2 ) (2) (2)的两个解,则 φ 1 ( x ) − φ 2 ( x ) 为 ( 1 ) \varphi_1(x)-\varphi_2(x)为(1) φ1(x)−φ2(x)为(1)的解
- 若 φ 1 ( x ) , φ 2 ( x ) \varphi_1(x),\varphi_2(x) φ1(x),φ2(x)分别为 ( 3 ) , ( 4 ) (3),(4) (3),(4)的两个解,则 φ 1 ( x ) + φ 2 ( x ) 为 ( 2 ) \varphi_1(x)+\varphi_2(x)为(2) φ1(x)+φ2(x)为(2)的解
- 若 φ 1 ( x ) , φ 2 ( x ) , . . . , φ s ( x ) \varphi_1(x),\varphi_2(x),...,\varphi_s(x) φ1(x),φ2(x),...,φs(x)分别为 ( 2 ) (2) (2)的一组解,则 k 1 φ 1 ( x ) + k 2 φ 2 ( x ) + . . . + k s φ s ( x ) 为 ( 2 ) k_1\varphi_1(x)+k_2\varphi_2(x)+...+k_s\varphi_s(x)为(2) k1φ1(x)+k2φ2(x)+...+ksφs(x)为(2)的解的充要条件是 k 1 + k 2 + . . . + k s = 1 k_1+k_2+...+k_s = 1 k1+k2+...+ks=1
- 设 φ 1 ( x ) , φ 2 ( x ) , . . . , φ n ( x ) \varphi_1(x),\varphi_2(x),...,\varphi_n(x) φ1(x),φ2(x),...,φn(x)为 ( 1 ) (1) (1)的 n n n个线性无关的解,则 k 1 φ 1 ( x ) + k 2 φ 2 ( x ) + . . . + k n φ n ( x ) 为 ( 1 ) k_1\varphi_1(x)+k_2\varphi_2(x)+...+k_n\varphi_n(x)为(1) k1φ1(x)+k2φ2(x)+...+knφn(x)为(1)的通解
- 设 φ 1 ( x ) , φ 2 ( x ) , . . . , φ n ( x ) \varphi_1(x),\varphi_2(x),...,\varphi_n(x) φ1(x),φ2(x),...,φn(x)为 ( 1 ) (1) (1)的 n n n个线性无关的解, φ 0 ( x ) \varphi_0(x) φ0(x)为 ( 2 ) (2) (2)的一个特解,则 k 1 φ 1 ( x ) + k 2 φ 2 ( x ) + . . . + k n φ n ( x ) + φ 0 ( x ) 为 ( 2 ) k_1\varphi_1(x)+k_2\varphi_2(x)+...+k_n\varphi_n(x)+\varphi_0(x)为(2) k1φ1(x)+k2φ2(x)+...+knφn(x)+φ0(x)为(2)的通解。
-
例题:
-
设线性无关函数 y 1 , y 2 , y 3 y_1,y_2,y_3 y1,y2,y3都是二阶非齐次线性方程 y ′ ′ + P ( x ) y ′ + Q ( x ) y = f ( x ) y^{''}+P(x)y^{'}+Q(x)y = f(x) y′′+P(x)y′+Q(x)y=f(x)的解 C 1 , C 2 C_1,C_2 C1,C2是任意常数,则方程的通解为()
A. C 1 y 1 + C 2 y 2 + y 3 C_1y_1+C_2y_2+y_3 C1y1+C2y2+y3,B. C 1 y 1 + C 2 y 2 + ( C 1 + C 2 ) y 3 C_1y_1+C_2y_2+(C_1+C_2)y_3 C1y1+C2y2+(C1+C2)y3
C. C 1 y 1 + C 2 y 2 − ( 1 + C 1 + C 2 ) y 3 C_1y_1+C_2y_2-(1+C_1+C_2)y_3 C1y1+C2y2−(1+C1+C2)y3,D. C 1 y 1 + C 2 y 2 + ( 1 − C 1 − C 2 ) y 3 C_1y_1+C_2y_2+(1-C_1-C_2)y_3 C1y1+C2y2+(1−C1−C2)y3
-
已知微分方程 y ′ ′ + P ( x ) y ′ + q ( x ) y = f ( x ) y^{''}+P(x)y^{'}+q(x)y = f(x) y′′+P(x)y′+q(x)y=f(x)有三个解 y 1 = x , y 2 = e x , e 2 x y_1 = x,y_2 = e^x,e^{2x} y1=x,y2=ex,e2x,求此方程满足初始条件 y ( 0 ) = 1 , y ′ ( 0 ) = 3 y(0) = 1,y^{'}(0) = 3 y(0)=1,y′(0)=3的特解
-
-
-
二阶常系数齐次线性微分方程
-
给特征方程,求通解解法:
-
写出求解微分方程的特征方程
-
根据判断判别式的形式或解的类型判断微分方程通解的类型
-
特征方程形式: y ′ ′ + p y ′ + q y = 0 ( q , p 为常数 ) y^{''}+py^{'}+qy=0(q,p为常数) y′′+py′+qy=0(q,p为常数)
- 当 p 2 − 4 q > 0 p^2-4q>0 p2−4q>0时,有两个相异实根 r 1 , r 2 r_1,r_2 r1,r2,则微分方程的通解为 y = C 1 e r 1 x + C 2 e r 2 x y = C_1e^{r_1x}+C_2e^{r_2x} y=C1er1x+C2er2x
- 当 p 2 − 4 q = 0 p^2-4q=0 p2−4q=0时,有两个相等实根 r 1 = r 2 = − p 2 r_1=r_2=-\frac{p}{2} r1=r2=−2p,则微分方程的通解为 y = ( C 1 + C 2 x ) e r 1 x y = (C_1+C_2x)e^{r_1x} y=(C1+C2x)er1x
- 当 p 2 − 4 q > 0 p^2-4q>0 p2−4q>0时,有一对共轭复根 r 1 = α + i β , r 2 = α − i β r_1 = \alpha +i\beta, r_2 = \alpha -i\beta r1=α+iβ,r2=α−iβ,则微分方程的通解为 y = e α x ( C 1 s i n β x + C 2 c o s β x ) y =e^{\alpha x}( C_1sin{\beta x}+C_2cos{\beta x}) y=eαx(C1sinβx+C2cosβx)
-
推广到高阶:特征方程形式: r 3 + p r 2 + q r 2 + q r + k = 0 r^3+pr^2+qr^2+qr+k = 0 r3+pr2+qr2+qr+k=0
- 几阶的就找几个根,就有几个未知常数量,复根一定成对出现
- 特征方程有 k k k重实根 r r r,则通解: ( C 1 + C 2 x + . . . + C k x k − 1 ) e r x (C_1+C_2x+...+C_kx^{k-1})e^{rx} (C1+C2x+...+Ckxk−1)erx
- 特征方程有 k k k重虚根 r = α ± i β r = \alpha \pm i\beta r=α±iβ,则通解: e α x [ ( C 1 + C 2 x + . . . + C k x k − 1 ) c o s β x + ( D 1 + D 2 x + . . . + D k x k − 1 ) s i n β x ] e^{\alpha x}[(C_1+C_2x+...+C_kx^{k-1})cos\beta x+(D_1+D_2x+...+D_kx^{k-1})sin\beta x] eαx[(C1+C2x+...+Ckxk−1)cosβx+(D1+D2x+...+Dkxk−1)sinβx]
- 若 r 1 ≠ r 2 ≠ r 3 ∈ R r_1\neq r_2\neq r_3 \in R r1=r2=r3∈R,通解: y = C 1 e r 1 x + C 2 e r 2 x + C 3 e r 3 x y = C_1e^{r_1x}+C_2e^{r_2x}+C_3e^{r_3x} y=C1er1x+C2er2x+C3er3x
- 若 r 1 = r 2 = r ≠ r 3 ∈ R r_1 = r_2 = r\neq r_3 \in R r1=r2=r=r3∈R,通解: y = ( C 1 + C 2 x ) e r x + C 3 e r 3 x y = (C_1+C_2x)e^{rx}+C_3e^{r_3x} y=(C1+C2x)erx+C3er3x
- 若 r 1 = r 2 = r 3 = r ∈ R r_1 = r_2 = r_3 =r\in R r1=r2=r3=r∈R,通解: y = ( C 1 + C 2 x + C 3 x 2 ) e r x y = (C_1+C_2x+C_3x^2)e^{rx} y=(C1+C2x+C3x2)erx
- 若 r 1 = α + i β , r 2 = α − i β , r 3 ∈ R r_1 = \alpha +i\beta, r_2 = \alpha -i\beta, r_3 \in R r1=α+iβ,r2=α−iβ,r3∈R,通解: y = e α x ( C 1 s i n β x + C 2 c o s β x ) + C 3 e r 3 x y = e^{\alpha x}(C_1sin\beta x+C_2cos\beta x)+C_3e^{r_3x} y=eαx(C1sinβx+C2cosβx)+C3er3x
-
求根的方法:凑完全平方式,求根公式
-
-
例题:
- 求 y ′ ′ + a y = 0 y^{''}+ay = 0 y′′+ay=0的通解。
- 求 y ′ ′ ′ − 2 y ′ ′ + 5 y ′ = 0 y^{'''}-2y^{''}+5y^{'} = 0 y′′′−2y′′+5y′=0的通解。
- 求 y ( 4 ) − 2 y ′ ′ ′ + 5 y ′ ′ = 0 y^{(4)}-2y^{'''}+5y^{''} = 0 y(4)−2y′′′+5y′′=0的通解。
-
-
给特/通解,求特征方程解法:
-
方法:
- 先根据解找特征方程的根,假设特征方程为二次方程
- 如果存在解 y = C 1 e r 1 x y = C_1e^{r_1x} y=C1er1x,一定有个根 r 1 r_1 r1
- 如果存在解 y = ( C 1 + C 2 x ) e r x y = (C_1+C_2x)e^{rx} y=(C1+C2x)erx,一定有复根 r r r
- 如果存在解 y = e α x ( C 1 s i n β x + C 2 c o s β x ) y =e^{\alpha x}( C_1sin{\beta x}+C_2cos{\beta x}) y=eαx(C1sinβx+C2cosβx),一定存在虚根 r = α ± β i r = \alpha \pm \beta i r=α±βi
- 根据根写出特征方程
- 先根据解找特征方程的根,假设特征方程为二次方程
-
例题:
-
y 1 = e x , y = 3 x e x y_1 = e^x,y = 3xe^x y1=ex,y=3xex为某二阶常系数齐次线性微分方程的两个特解,则该微分方程为?
-
求一个以 y 1 = e x , y 2 = 2 x e x , y 3 = c o s 2 x , y 4 = 3 s i n 2 x y_1 = e^x,y_2 = 2xe^x,y_3 = cos2x,y_4 = 3sin2x y1=ex,y2=2xex,y3=cos2x,y4=3sin2x为特解的4阶常数齐次微分方程,并求其通解
-
已知 y 1 = c o s x + e x y_1 = cosx+e^x y1=cosx+ex, y 2 = c o s x + e − 2 x y_2 = cosx+e^{-2x} y2=cosx+e−2x, y 3 = c o s x + e x − e − 2 x y_3 = cosx+e^x-e^{-2x} y3=cosx+ex−e−2x为某个二阶常系数线性非齐次微分方程的三个解,求此方程,并求该微分方程的通解。
-
-
-
-
常系数非齐次线性微分方程: y ′ ′ + p y ′ + q y = f ( x ) ( q , p 为常数 ) y^{''}+py^{'}+qy=f(x)(q,p为常数) y′′+py′+qy=f(x)(q,p为常数)形式
-
根据微分方程,求解微分方程通解
- 方法:
-
f
(
x
)
=
e
λ
x
P
m
(
x
)
f(x) = e^{\lambda x}P_m(x)
f(x)=eλxPm(x)型:
- 写出微分方程齐次形式的特征方程,然后求解
- 根据解的情况,写出齐次形式的通解。
- 根据解的情况,判断微分方程特解的形式,其中
Q
m
=
(
a
m
x
m
+
a
m
−
1
x
m
−
1
+
.
.
.
+
a
0
)
Q_m = (a_mx^m+a_{m-1}x^{m-1}+...+a_0)
Qm=(amxm+am−1xm−1+...+a0)
- 若 λ \lambda λ不是特征方程的根,特解形式为 y ∗ = Q m ( x ) e λ x y^{*} = Q_m(x)e^{\lambda x} y∗=Qm(x)eλx
- 若 λ \lambda λ是特征方程的单根,特解形式为 y ∗ = x Q m ( x ) e λ x y^{*} = xQ_m(x)e^{\lambda x} y∗=xQm(x)eλx
- 若 λ \lambda λ是特征方程的重根,特解形式为 y ∗ = x 2 Q m ( x ) e λ x y^{*} = x^2Q_m(x)e^{\lambda x} y∗=x2Qm(x)eλx
- 带入原微分方程,求解 a m . a m − 1 , . . . , a 0 a_m.a_{m-1},...,a_0 am.am−1,...,a0,得到非齐次特解,求解有一个稍微快速的方法:微分算子法。
- 非齐次的通解 = 齐次的通解+非齐次的特解。
-
f
(
x
)
=
e
λ
x
[
P
l
(
x
)
c
o
s
w
x
+
P
n
~
(
x
)
s
i
n
w
x
]
f(x) = e^{\lambda x}[P_l(x)coswx+\widetilde{P_n}(x)sinwx]
f(x)=eλx[Pl(x)coswx+Pn
(x)sinwx]型:
- 写出微分方程齐次形式的特征方程,然后求解
- 根据解的情况写出齐次形式的通解。
- 根据解的情况,判断微分方程特解的形式:若 λ + i w \lambda +iw λ+iw为特征方程的 k k k重根, k = { 0 , λ + i w 不是根 1 , λ + i w 是根 , m = m a x { n , l } k = \begin{cases}0,&\lambda+iw不是根\\1,&\lambda+iw是根\end{cases},m = max\{n,l\} k={0,1,λ+iw不是根λ+iw是根,m=max{n,l},则可设特解: y ∗ = x k e λ x [ R m ( x ) c o s w x + R ~ m ( x ) s i n w x ] y^{*} = x^ke^{\lambda x}[R_m(x)coswx+\widetilde{R}_m(x)sinwx] y∗=xkeλx[Rm(x)coswx+R m(x)sinwx]
- 带入原微分方程,求解 a m . a m − 1 , . . . , a 0 a_m.a_{m-1},...,a_0 am.am−1,...,a0,得到非齐次特解
- 非齐次的通解 = 齐次的通解+非齐次的特解。
-
f
(
x
)
=
e
λ
x
P
m
(
x
)
f(x) = e^{\lambda x}P_m(x)
f(x)=eλxPm(x)型:
- 例题:
- 求方程 y ′ ′ − 5 y ′ + 6 y = x e 2 x y^{''}-5y^{'}+6y = xe^{2x} y′′−5y′+6y=xe2x的通解,并求满足 y ( 0 ) = 1 , y ′ ( 0 ) = 2 y(0) = 1,y^{'}(0) = 2 y(0)=1,y′(0)=2的特解。
- 求方程 y ′ ′ + y = x c o s 2 x y^{''}+y = xcos2x y′′+y=xcos2x的通解
- y ′ ′ − 5 y ′ + 6 y = x e 2 x + 3 e 4 x y^{''}-5y^{'}+6y = xe^{2x}+3e^{4x} y′′−5y′+6y=xe2x+3e4x的特解应该设为什么
- 求方程 y ′ ′ + y = e x c o s 2 x y^{''}+y= e^xcos^2x y′′+y=excos2x
- 方法:
-
给特/通解,求特征方程解法: y ′ ′ + p y ′ + q y = f ( x ) ( q , p 为常数 ) y^{''}+py^{'}+qy=f(x)(q,p为常数) y′′+py′+qy=f(x)(q,p为常数)
-
方法:在通解/特解中找该非齐次微分方程的特解部分和齐次的通解,给出的通解/特解每一项的形式 Q m ( x ) e λ x Q_m(x)e^{\lambda x} Qm(x)eλx,注意一个式子中一定最多只有 2 2 2种 λ \lambda λ
-
例题:
- 已知二阶常微分方程
y
′
′
+
a
y
′
+
b
y
=
c
e
x
y^{''}+ay^{'}+by = ce^x
y′′+ay′+by=cex有特解
y
=
e
−
x
(
1
+
x
e
2
x
)
y = e^{-x}(1+xe^{2x})
y=e−x(1+xe2x)
- 求 a , b , c a,b,c a,b,c(方法一:把特解带入原方程恒成立,计算 a , b , c a,b,c a,b,c需要一点计算量,方法二:先求出 a , b a,b a,b,再带入)
- 求微分方程的通解
- 已知二阶常微分方程
y
′
′
+
a
y
′
+
b
y
=
c
e
x
y^{''}+ay^{'}+by = ce^x
y′′+ay′+by=cex有特解
y
=
e
−
x
(
1
+
x
e
2
x
)
y = e^{-x}(1+xe^{2x})
y=e−x(1+xe2x)
-
-
-
伯努利方程(数1)
- 形式: d y d x + P ( x ) y = Q ( x ) y n \frac{dy}{dx}+P(x)y = Q(x)y^n dxdy+P(x)y=Q(x)yn( n ≠ 0 , 1 n\neq 0,1 n=0,1)
- 解法:
- 两边同除 y n y^n yn, y − n d y d x + P ( x ) y 1 − n = Q ( x ) y^{-n}\frac{dy}{dx}+P(x)y^{1-n} = Q(x) y−ndxdy+P(x)y1−n=Q(x)
- 令 z = y 1 − n z = y^{1-n} z=y1−n,则 d z d x = d z d y ⋅ d y d x = ( 1 − n ) ⋅ y − n d y d x \frac{dz}{dx} = \frac{dz}{dy}\cdot\frac{dy}{dx} = (1-n)\cdot y^{-n}\frac{dy}{dx} dxdz=dydz⋅dxdy=(1−n)⋅y−ndxdy,带入上面的式子,得 1 1 − n d z d x + P ( x ) z = Q ( x ) \frac{1}{1-n}\frac{dz}{dx}+P(x)z = Q(x) 1−n1dxdz+P(x)z=Q(x),得到一个一阶非齐次线性微分方程。
- 求解上一步得到得一阶非齐次线性微分方程,得到 z = z ( x ) z = z(x) z=z(x),使用 z = y 1 − n z = y^{1-n} z=y1−n替换回 y = y ( x ) y = y(x) y=y(x)
- 例题:
- 求 d y d x + y x = a ( l n x ) y 2 \frac{dy}{dx}+\frac{y}{x} = a(lnx)y^2 dxdy+xy=a(lnx)y2的通解。
-
全微分方程(数1)
- 定义:若存在 u ( x , y ) u(x,y) u(x,y)使 d u ( x , y ) = P ( x , y ) d x + Q ( x , y ) d y du(x,y) = P(x,y)dx+Q(x,y)dy du(x,y)=P(x,y)dx+Q(x,y)dy则称 P ( x , y ) d x + Q ( x , y ) d y = 0 P(x,y)dx+Q(x,y)dy = 0 P(x,y)dx+Q(x,y)dy=0为全微分方程(又叫做恰当方方程)
- 判别式: P , Q P,Q P,Q在某单联通区域 D D D内有连续一阶偏导数,则:为全微分方程 ⇔ ∂ P ∂ y = ∂ Q ∂ x , ( x , y ) ∈ D \Leftrightarrow\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x},(x,y)\in D ⇔∂y∂P=∂x∂Q,(x,y)∈D
- 求解步骤:
- 方法一:凑微分法:设法把
P
(
x
,
y
)
d
x
+
Q
(
x
,
y
)
d
y
P(x,y)dx+Q(x,y)dy
P(x,y)dx+Q(x,y)dy凑成
d
u
(
x
,
y
)
du(x,y)
du(x,y)
- step1:凑:在 d x dx dx前面设法找 x x x,凑 f ( x ) d x = d f ′ ( x ) f(x)dx = df^{'}(x) f(x)dx=df′(x),在 d y dy dy前面设法找 y y y,凑 f ( y ) d x = d f ′ ( y ) f(y)dx = df^{'}(y) f(y)dx=df′(y)
- step2:然后,找 u d v + v d u udv+vdu udv+vdu这种式子,凑 u d v + v d u = d u v udv+vdu = duv udv+vdu=duv
- step3:使用 d u + d v = d ( u + v ) du+dv = d(u+v) du+dv=d(u+v)这个形式,把 d d d提到前面。
- step4:求通解: f ( x ) = u ( x , y ) + C f(x) = u(x,y)+C f(x)=u(x,y)+C。
- 方法一:凑微分法:设法把
P
(
x
,
y
)
d
x
+
Q
(
x
,
y
)
d
y
P(x,y)dx+Q(x,y)dy
P(x,y)dx+Q(x,y)dy凑成
d
u
(
x
,
y
)
du(x,y)
du(x,y)
- 例题:
- z = f ( x , y ) z = f(x,y) z=f(x,y)满足: d z = ( e x + x y 2 ) d x + ( x 2 y + 1 y ) d y dz = (e^x+xy^2)dx+(x^2y+\frac{1}{y})dy dz=(ex+xy2)dx+(x2y+y1)dy,且 f ( 0 , 1 ) = 2 f(0,1) = 2 f(0,1)=2,求 f ( x , y ) f(x,y) f(x,y)
-
欧拉方程:
-
定义: x n y ( n ) + a n − 1 x n − 1 y ( n − 1 ) + . . . + a 1 x y ′ + a 0 y = f ( x ) , ( f ( x ) 可以为 0 ) x^ny^{(n)}+a_{n-1}x^{n-1}y^{(n-1)}+...+a_1xy^{'}+a_0y = f(x),(f(x)可以为0) xny(n)+an−1xn−1y(n−1)+...+a1xy′+a0y=f(x),(f(x)可以为0),其中 a n − 1 , a n − 2 , . . . , a 0 a_{n-1},a_{n-2},...,a_0 an−1,an−2,...,a0为常数
-
解法:
-
令 x = e t x = e^{t} x=et把 y y y关于 x x x的方程转化为 y y y关于 t t t的方程:把原方程转化为参数方程 y = y ( x ) ⇔ { x = e t y = y ( t ) y = y(x) \Leftrightarrow \begin{cases}x = e^t\\y = y(t)\end{cases} y=y(x)⇔{x=ety=y(t),则 y ′ = d y d x = d y / d t d x / d t = 1 e t d y d t y^{'} = \frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{1}{e^t}\frac{dy}{dt} y′=dxdy=dx/dtdy/dt=et1dtdy, y ′ ′ = d y ′ d x / d t = 1 e t ( − 1 e t d y d t + 1 e t d 2 y d t 2 ) = 1 e 2 t ( − d y d t + d 2 y d t 2 ) y^{''} = \frac{dy^{'}}{dx/dt} = \frac{1}{e^t}(-\frac{1}{e^t}\frac{dy}{dt}+\frac{1}{e^t}\frac{d^2y}{dt^2}) =\frac{1}{e^{2t}}(-\frac{dy}{dt}+\frac{d^2y}{dt^2}) y′′=dx/dtdy′=et1(−et1dtdy+et1dt2d2y)=e2t1(−dtdy+dt2d2y)
-
求参数方程的 y y y的 1 , 2 , . . . , n 1,2,...,n 1,2,...,n阶导数,将导数和 x = e t x = e^t x=et带入原方程的,变成一个只关于 y , t y,t y,t的方程,这个方程就是一个 n n n阶常系数齐次或非齐次微分方程
-
求解该齐次或非齐次微分方程
-
令 x = e t x = e^t x=et,换掉 t t t,得关于 x , y x,y x,y的方程
-
-
例题:
- 求微分方程 x 2 y ′ ′ + 4 x y ′ + 2 y = 0 x^2y^{''}+4xy^{'}+2y = 0 x2y′′+4xy′+2y=0的通解
-
解题思路
- 构造微分方程求解
- 场景:
- 求 f ( x ) f(x) f(x)或求曲线方程,往往是构造微分方程求解。
- 微分方程和变限积分结合:求导来构造微分方程,求到没有变限积分为止,也可把变限积分函数看成一个函数的原函数,例如 ∫ 0 x f ( t ) d t \int^x_0 f(t)dt ∫0xf(t)dt,可以看成 f ( x ) f(x) f(x)的原函数。
- 微分方程与导数/偏导结合:
- 根据导数定义构造微分方程 f ′ ( x ) = lim h → 0 f ( x + h ) − f ( x ) h f^{'}(x) = \lim\limits_{h\to 0}\frac{f(x+h)-f(x)}{h} f′(x)=h→0limhf(x+h)−f(x)
- 根据求导计算,例如反函数求导,参数方程求导。
- 微分方程和几何应用的结合。
- 例题:
- 连续函数 f ( x ) f(x) f(x)满足 f ( x ) = 3 ∫ 0 x f ( x − t ) d t + 2 f(x) = 3\int^x_0f(x-t)dt+2 f(x)=3∫0xf(x−t)dt+2求 f ( x ) , ( t i p : f ( 0 ) = 2 ) f(x),(tip:f(0) = 2) f(x),(tip:f(0)=2)
- 设 f ( x ) f(x) f(x)二阶连续可导,且 f ( x ) − 4 ∫ 0 x t f ( x − t ) d t = e x f(x)-4\int^x_0tf(x-t)dt = e^x f(x)−4∫0xtf(x−t)dt=ex,求 f ( x ) f(x) f(x)
- f ( x ) f(x) f(x)在 ( − ∞ , + ∞ ) (-\infty,+\infty) (−∞,+∞)非负连续,且 f ( x ) ∫ 0 x f ( x − t ) d t = x 3 f(x)\int^x_0f(x-t)dt = x^3 f(x)∫0xf(x−t)dt=x3,求 f ( x ) f(x) f(x)
- 用变量代替 x = s i n t x = sint x=sint将方程 ( 1 − x 2 ) d 2 y d x 2 − x d y d x − 4 y = 0 (1-x^2)\frac{d^2y}{dx^2}-x\frac{dy}{dx}-4y = 0 (1−x2)dx2d2y−xdxdy−4y=0化为 y y y关于 t t t的方程,并求微分方程的通解。
- f ( x ) f(x) f(x)在 ( 0 , + ∞ ) (0,+\infty) (0,+∞)上可导, f ( 0 ) = 1 f(0) = 1 f(0)=1,且 f ′ ( x ) + f ( x ) − 1 x + 1 ∫ 0 x f ( t ) d t = 0 f^{'}(x)+f(x)-\frac{1}{x+1}\int^x_0f(t)dt =0 f′(x)+f(x)−x+11∫0xf(t)dt=0,求 f ′ ( x ) f^{'}(x) f′(x),并证明当 x ≥ 0 x\ge 0 x≥0时, e − x ≤ f ( x ) ≤ 1 e^{-x}\le f(x)\le 1 e−x≤f(x)≤1成立(tip:积分不等式证明,我们在对式子化简时,尽量让变限积分和其他变量表达式分开)。
- 设曲线 L ; y = y ( x ) L;y = y(x) L;y=y(x)经过点 M ( 1 , 2 ) M(1,2) M(1,2),且从原点到此曲线上任意一点的法线的垂直距离等于该点的纵坐标,求此曲线方程。
- 一半球雪堆,融化速度与半球的表面积(不包括底面积)成正比,比例系数 k > 0 k>0 k>0,设融化过程中形状不变,设半径 r 0 r_0 r0的雪堆融化三小时后体积变为原来的的 1 8 \frac{1}{8} 81,求全部融化需要的时间
- 场景: