方差分析是一个全新的思路,它采用的是变异分解的思路,将组内组件分开,查看显著性。
变异分解,和数量遗传学的创立也密不可分,比如
表型 = 基因+ 环境
更进一步:表型 = 加性效应 + 非加性效应 + 环境
更更进一步:表型 = 加性效应 + 显性效应 + 上位性效应 + 环境
育种值是加性效应的部分
杂种优势是显性和上位性效应的部分
基因与环境互作是:环境*基因的效应
另外还有重复力效应(个体永久环境效应)、母体效应、窝别效应等等,都是使用表型数据剖分的形式进行计算和评估。
很多人分析数据,想看一下显著性与否,显著的话就说明有差异,具体差异是多少,需要进行多重比较。所以,先要有方差分析,才有显著性,只有显著了,才可以进行多重比较。先后顺序不能错。
方差分析,还有一定的前提假定。需要进行检验。
方差分析后,多重比较也有很多方法。
好在,现在的R语言足够友好,各种功能都已经打包好了,直接拿来用就行了。
下面看我的总结: