基于bert的情感分析程序

任务介绍

在当今信息爆炸的时代,互联网上充斥着海量的文本数据,如社交媒体评论、产品评价、新闻报道等。这些文本数据中蕴含着用户的情感倾向,对于企业、政府机构以及研究人员来说,具有极高的价值。通过情感分析,可以了解消费者对产品或服务的满意度,监测公众对社会事件的态度,为决策提供有力支持。因此,情感分析项目应运而生,旨在从文本数据中自动识别和提取情感信息,帮助企业更好地理解用户需求,优化产品和服务,提升品牌形象。
在这里插入图片描述

数据概览

本次任务的数据集是

注意事项

本文代码如果正常复制粘贴到notebook类编辑器即可直接运行,若是复制到文本编辑器,根据报错将一些直接打出的变量增加一个print即可。

数据处理

代码准备

这段代码主要导入了数据集,还有bert预训练模型和分词器。

import
### 使用 BERT 进行情感分析 #### 模型介绍 BERT 是一种深度双向表示模型,专为通用“语言理解”设计。该模型能够从左至右以及从右至左学习上下文信息[^1]。 #### 数据准备 对于情感分类任务,通常会有一个标注的数据集作为输入。例如,在给定的例子中,训练集包含 10026 行数据,而测试集则有 4850 行数据[^3]。这些数据应该被处理成适合喂入 BERT 模型的形式,即每条记录应转换为 token IDs 和 attention masks 等形式以便于模型理解和计算。 #### 部署方式 为了方便调用并集成到其他应用程序当中,可以考虑通过 RESTful API 来提供服务。FastAPI 提供了一个简单易用的方式来创建高性能 Web 应用程序和服务端接口;结合 Hugging Face 的 `Transformers` 库与 PyTorch 框架,则可以让开发者快速搭建起基于 BERT情感分析系统[^2]。 以下是构建这样一个系统的 Python 示例代码: ```python from fastapi import FastAPI, Request import torch from transformers import BertTokenizer, BertForSequenceClassification app = FastAPI() tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertForSequenceClassification.from_pretrained('./path_to_saved_model') @app.post("/predict/") async def predict(request: Request): data = await request.json() text = data['text'] inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True) outputs = model(**inputs)[0] prediction = torch.argmax(outputs).item() return {"sentiment": "positive" if prediction==1 else "negative"} ``` 此段脚本展示了如何加载预训练好的 BERT 模型及其对应的分词器,并定义了一个 POST 请求处理器来接收待预测文本字符串,对其进行编码后送入模型得到最终的情感倾向结果(正面或负面)。注意这里假设已经保存了一份经过微调后的特定领域情感分类版本的 BERT 模型文件路径 './path_to_saved_model' 中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Nowl

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值