大疆M210 V2 与Onboad-SDK-ROS 4.1.0开发与DJI Assitant2 For Matrice踩坑合集

一、连线

需要:

  1. 两台笔记本电脑(一台安装Win10+DJI Assitant2 For Matrice进行仿真以及上位机显示,另一台安装Ubuntu16.04+ros系统起到替代秒算(Onboard Computer)的作用)
  2. 一根双头USB或者USB转TypeC(安卓充电线)连接M210的USB端与装了Win10系统端。
  3. USB转UART线,连接安装Ubuntu系统的电脑,安装方式如下图所示:
    在这里插入图片描述实物图连接如下:(GND连GND,电源不连,TX连RX,RX连TX)
    GND连接

二、WINDOWS端配置

  1. DJI Assistant 2 For Matrice 调参软件
  2. 注册成为开发人员:(获得APP_ID与APP_KEY)
    打开链接:https://developer.dji.com/register/,注册成为DJI Onboard SDK开发人员,新建应用,该应用会自动生成一个APP ID和key。
    详细注册流程:https://www.pianshen.com/article/94681269963/
  3. 激活大疆帐号:
    将遥控器(与遥控器屏幕)端连接上无线网络,并进入DJI Pilot,点击左上角的三条横杠,选择设置,在界面左边登录第二步中注册的帐号。同时,将Windows端的 DJI Assistant 2 For Matrice调参软件也进行帐号登录从而进行帐号激活(必须联网激活,不然运行ROS端或Linux中的Demo会报错)。
  4. 启用SDK API(如图),必须选中Enable API Control
    在这里插入图片描述此时可以利用遥控器控制无人机在仿真软件中飞行

三、Ubuntu端配置与报错集锦

  1. 安装ros
  2. ROS版本的Onboard SDK-ROS是基于Linux版开发的,使用Onboard SDK-ROS 4.1.0时,首先确保正确安装编译OSDK 4.1.0版本:
    OSDK与OSDK-ROS下载地址:
    OSDK:https://github.com/dji-sdk/Onboard-SDK
    OSDK安装配置方法:
    https://blog.csdn.net/u012968115/article/details/79097532
    OSDK-ROS:https://github.com/dji-sdk/Onboard-SDK-ROS
    OSDK-ROS安装配置方法:
    https://developer.dji.com/cn/onboard-sdk/documentation/quickstart/development-environment.html
    其中要将这两个launch文件中的波特率、APP_ID、APP_KEY等同样进行配置
    在这里插入图片描述在这里插入图片描述

注意:ROS版的波特率必须是921600,可以配置成1000000,不然运行Flight Control 节点会报如下错误:(更改波特率后,一定要重新启动飞行器)
在这里插入图片描述在这里插入图片描述在这里插入图片描述运行DEMO过程还有很多其他错误,没有保存截图,无法贴上,一般都是USB转UART的TX RX接反了,或者下载编译的OSDK与OSDK-ROS版本不对,大疆帐号未激活,波特率设置不正确,launch文件中的APP_ID与APP_KEY忘记填写,USB驱动未安装或者安装版本过低等等,确保上述都没问题,运行DENO就不会报错。
在此感谢大家技术人员不厌其烦的指导:(邮箱:dev@dji.com)
在这里插入图片描述

为了有效地进行跨海大桥的自动化裂缝检测,大疆M210-RTK无人机直接稀疏里程计法(DSO)提供了强大的硬件和软件支持。在使用这些高级技术之前,确保你已经熟悉了《无人机驱动的桥梁智能检测系统:裂缝深度分析3D模型重建》一文,该文深入探讨了相关技术和实际应用。 参考资源链接:[无人机驱动的桥梁智能检测系统:裂缝深度分析3D模型重建](https://wenku.csdn.net/doc/oi1asu0802) 大疆M210-RTK无人机搭载高分辨率相机,能够在飞行过程中捕捉高精度的桥梁图像,为裂缝检测提供了丰富的视觉数据。为了充分利用这些数据,你需要按照以下步骤操作: 1. 飞行规划:首先,使用大疆无人机的飞行规划软件设定巡检任务,包括飞行路径、扫描间距和拍摄角度。确保整个桥梁结构都能被相机覆盖,特别是在裂缝可能存在的区域进行重点采集。 2. 数据采集:在执行飞行任务时,无人机将按照预设的飞行计划进行拍摄,获取连续的图像序列,这些图像将用于后续的裂缝检测和3D建模。 3. 图像处理:获取的图像将被导入到具有图像处理功能的软件中。软件将应用图像识别算法对裂缝进行自动检测,并计算裂缝的长宽。通过直接稀疏里程计法(DSO)对图像序列进行处理,可以生成桥梁的3D模型。 4. 裂缝识别测量:利用深度学习或传统图像处理技术,系统将识别出图像中的裂缝,并计算裂缝的精确尺寸。DSO算法将帮助恢复出裂缝在三维空间中的位置和形态。 5. 3D模型构建:通过DSO算法处理图像数据,可以建立桥梁结构的3D模型。模型将展示出桥梁的几何结构,裂缝将作为3D模型的一部分被准确地标注和展示出来。 6. 报告生成:最终,系统将整合裂缝检测结果和3D模型,生成检测报告,为桥梁的维护和修复工作提供决策支持。 掌握这一整套流程后,你将能够有效地对跨海大桥进行自动化检测。为了深化理解并掌握更多高级技巧,推荐参阅《无人机驱动的桥梁智能检测系统:裂缝深度分析3D模型重建》一文,其中详细介绍了相关技术和实际应用案例。 参考资源链接:[无人机驱动的桥梁智能检测系统:裂缝深度分析3D模型重建](https://wenku.csdn.net/doc/oi1asu0802)
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值