1.3 n阶行列式

这篇博客详细介绍了n阶行列式的定义及其各种性质,包括上三角和下三角行列式的值、行(列)乘以常数、行(列)元素为0时行列式的值、行(列)互换的影响,以及行列式的拆分和特殊情况。通过归纳法证明了这些性质,并对每个性质给出了详细的推导过程。
摘要由CSDN通过智能技术生成

第一章 行列式

1.3 n阶行列式

n阶行列式的定义

  1. 用两条竖线围起来的由 n n n n n n列元素组成的式子(数值)称为一个n阶行列式,有时记为 d e t ∣ A ∣ det|A| detA ∣ A ∣ = ∣ a 11 a 12 . . . a 1 n a 21 a 22 . . . a 2 n . . . . . . a n 1 a n 2 . . . a n n ∣ |A|=\begin{vmatrix} a_{11}&a_{12}&...&a_{1n} \\ a_{21}&a_{22}&...&a_{2n} \\ &...&...\\ a_{n1}&a_{n2}&...&a_{nn} \end{vmatrix} A=a11a21an1a12a22...an2............a1na2nann
  • i i i行上元素全体称为行列式 ∣ A ∣ |A| A i i i,第 j j j列上元素全体称为行列式 ∣ A ∣ |A| A j j j.
  • i i i行第 j j j列交点上的元素 a i j a_{ij} aij称为行列式 ∣ A ∣ |A| A ( i , j ) (i,j) (i,j)元素.
  • 元素 a 11 , a 22 , . . . , a n n a_{11},a_{22},...,a_{nn} a11,a22,...,ann称为 ∣ A ∣ |A| A主对角线.
  1. 定义元素 a i j a_{ij} aij余子式 M i j M_{ij} Mij为由行列式 ∣ A ∣ |A| A中划去第i行第j列后剩下 n − 1 n-1 n1行与 n − 1 n-1 n1列元素组成的行列式
  2. 定义当 n = 1 n=1 n=1时,一阶行列式 ∣ a 11 ∣ = d e f a 11 |a_{11}|\overset{def}{=}a_{11} a11=defa11
  • 设所有 n − 1 n-1 n1阶行列式的值已经定义好,特别地, M i j M_{ij} Mij的值已定义好
  • 定义n阶行列式(归纳法定义,按第1列进行展开): ∣ A ∣ = d e f a 11 M 11 − a 21 M 21 + . . . + ( − 1 ) n + 1 a n 1 M n 1 |A|\overset{def}{=}a_{11}M_{11}-a_{21}M_{21}+...+(-1)^{n+1}a_{n1}M_{n1} A=defa11M11a21M21+...+(1)n+1an1Mn1
  1. 定义 a i j a_{ij} aij代数余子式 A i j = d e f ( − 1 ) i + j M i j A_{ij}\overset{def}{=}(-1)^{i+j}M_{ij} Aij=def(1)i+jMij
  • 则n阶行列式可定义为 ∣ A ∣ = d e f a 11 M 11 + a 21 M 21 + . . . + a n 1 M n 1 |A|\overset{def}{=}a_{11}M_{11}+a_{21}M_{21}+...+a_{n1}M_{n1} A=defa11M11+a21M21+...+an1Mn1

行列式的性质与证明

性质1:上三角(下三角)行列式的值等于主对角元素的乘积
  • 证明,当 n = 1 n=1 n=1时, ∣ a 11 ∣ = a 11 |a_{11}|=a_{11} a11=a11结论成立
  • 设结论对 n − 1 n-1 n1阶行列式成立,既证n阶的情形
  • Case1:对上三角行列式 ∣ A ∣ = ∣ a 11 a 12 . . . a 1 n 0 a 22 . . . a 2 n . . . . . . 0 0 . . . a n n ∣ |A|=\begin{vmatrix} a_{11}&a_{12}&...&a_{1n} \\ 0&a_{22}&...&a_{2n} \\ &...&...\\ 0&0&...&a_{nn} \end{vmatrix} A=a1100a12a22...0............a1na2nann
  • 由定义得 ∣ A ∣ = a 11 M 11 |A|=a_{11}M_{11} A=a11M11,其中 M 11 M_{11} M11 n − 1 n-1 n1阶上三角行列式
  • 由归纳假设 M 11 = a 22 . . . a n n M_{11}=a_{22}...a_{nn} M11=a22...ann
  • ∣ A ∣ = a 11 a 22 . . . a n n |A|=a_{11}a_{22}...a_{nn} A=a11a22...ann
  • Case2:对下三角行列式 ∣ A ∣ = ∣ a 11 0 . . . 0 a 21 a 22 . . . 0 . . . . . . a n 1 a n 2 . . . a n n ∣ |A|=\begin{vmatrix} a_{11}&0&...&0 \\ a_{21}&a_{22}&...&0 \\ &...&...\\ a_{n1}&a_{n2}&...&a_{nn} \end{vmatrix} A=a11a21an10a22...an2............00ann
  • 由定义得 ∣ A ∣ = a 11 M 11 − a 21 M 21 + . . . + ( − 1 ) n + 1 a n 1 M n 1 |A|=a_{11}M_{11}-a_{21}M_{21}+...+(-1)^{n+1}a_{n1}M_{n1} A=a11M11a21M21+...+(1)n+1an1Mn1
  • 考虑余子式 M k 1 ( 1 ≤ k ≤ n ) M_{k1}(1\le k\le n) Mk1(1kn),设 M k 1 = ( b i j ) ( n − 1 ) ( n − 1 ) M_{k1}=(b_{ij})_{(n-1)(n-1)} Mk1=(bij)(n1)(n1) b i j = { a i , j + 1 ( 1 ≤ i ≤ k − 1 ) a i + 1 , j + 1 ( k ≤ i ≤ n − 1 ) b_{ij}=\left\{\begin{matrix} a_{i,j+1}(1\le i\le k-1)\\ a_{i+1,j+1}(k\le i \le n-1) \end{matrix}\right. bij={ ai,j+1(1ik1)ai+1,j+1(kin1)
  • 因为 ∣ A ∣ |A| A为下三角行列式,即 a i j = 0 a_{ij}=0 aij=0 ∀ i < j \forall i<j i<j
  • 可得 M k 1 M_{k1} Mk1都是下三角行列式
  • 断言,当 k ≥ 2 k\ge2 k2时, M k 1 M_{k1} Mk1一定有一个主对角元等于0.证明: b k − 1 , k − 1 = a k − 1 , k = 0 b_{k-1,k-1}=a_{k-1,k}=0 bk1,k1=ak1,k=0
  • 由归纳假设, M k 1 = 0 ( k ≥ 2 ) , M 11 = a 22 . . . a n n M_{k1}=0(k\ge 2),M_{11}=a_{22}...a_{nn} Mk1=0(k2),M11=a22...ann
  • ∣ A ∣ = a 11 a 22 . . . a n n |A|=a_{11}a_{22}...a_{nn} A=a11a22...ann
性质2:行列式 ∣ A ∣ |A| A的某一行(列)乘以常数c,得到的行列式 ∣ B ∣ = c ∣ A ∣ |B|=c|A| B=cA
  • 证明,当n=1时, ∣ B ∣ = ∣ c a 11 ∣ = c a 11 = c ∣ A ∣ |B|=|ca_{11}|=ca_{11}=c|A| B=ca11=ca11=cA
  • 设结论对 n − 1 n-1 n1阶行列式成立,证明 n n n阶情形,设 ∣ A ∣ |A| A的余子式为 ∣ M i j ∣ |M_{ij}| Mij ∣ B ∣ |B| B的余子式为 ∣ N i j ∣ |N_{ij}| Nij
  • Case1:行的情形 ∣ B ∣ = ∣ a 11 a 12 . . . a 1 n . . . . . . c a i 1 c a i 2 . . . c a i n . . . . . . a n 1 a n 2 . . . a n n ∣ |B|=\begin{vmatrix} a_{11}&a_{12}&...&a_{1n}\\ &...&...\\ ca_{i1}&ca_{i2}&...&ca_{in}\\ &...&...\\ a_{n1}&a_{n2}&...&a_{nn}\\ \end{vmatrix} B=a11cai1an1a12...cai2...an2...............a1ncainann
  • 由定义 ∣ B ∣ = a 11 N 11 − a 21 N 21 + . . . + ( − 1 ) ( i + 1 ) c a i 1 N i 1 + . . . + ( − 1 ) n + 1 a n 1 N n 1 |B|=a_{11}N_{11}-a_{21}N_{21}+...+(-1)^{(i+1)}ca_{i1}N_{i1}+...+(-1)^{n+1}a_{n1}N_{n1} B=a11N11a21N21+...+(1)(i+1)cai1Ni1+...+(1)n+1an1Nn1
  • k ≠ i , N k 1 = M k 1 k\neq i,N_{k1}=M_{k1} k=i,Nk1=Mk1的某一行元素乘以 c c c得到
  • 由归纳假设 N k 1 = c M k 1 ( ∀ k ≠ i ) N_{k1}=cM_{k1}(\forall k\neq i) Nk1=cMk1(k=i)
  • k = i k=i k=i时, N i 1 = M i 1 N_{i1}=M_{i1} Ni1=Mi1
  • ∣ B ∣ = c ( a 11 M 11 − a 21 M 21 + . . . + ( − 1 ) i + 1 a i 1 M i 1 + . . . + ( − 1 ) ( n + 1 ) a n 1 N n 1 ) = c ∣ A ∣ |B|=c(a_{11}M_{11}-a_{21}M_{21}+...+(-1)^{i+1}a_{i1}M_{i1}+...+(-1)^{(n+1)}a_{n1}N_{n1})=c|A| B=c(a11M11a21M21+...+(1)i+1ai1Mi1+...+(1)(n+1)an1Nn1)=cA
  • Case2:列的情形
  • 乘以c的是第一列 ∣ B ∣ = ∣ c a 11 a 12 . . . a i n c a 21 a 22 . . . a 2 n . . . . . . c a n 1 a n 2 . . . a n n ∣ = c a 11 N 11 − c a 21 N 21 + . . . + ( − 1 ) n + 1 c a n 1 N 11 |B|=\begin{vmatrix} ca_{11}&a_{12}&...&a_{in}\\ ca_{21}&a_{22}&...&a_{2n}\\ &...&...\\ ca_{n1}&a_{n2}&...&a_{nn}\\ \end{vmatrix}\\ =ca_{11}N_{11}-ca_{21}N_{21}+...+(-1)^{n+1}ca_{n1}N_{11} B=ca11ca21can1a12a22...a
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值