线性代数笔记2-n阶行列式


前言

本笔记记录自B站《线性代数》高清教学视频 “惊叹号”系列 宋浩老师第二课


一、简述n阶行列式的计算

前面学到二阶行列式和三阶行列式我们可以通过画线来计算行列式的结果。二阶行列式画2根线,三阶行列式画6根线,如果是四阶行列式我们就要画24根线。n阶行列式我们就要画n!这么多根线。这么多线这么多元素计算,我们也很容易画错或计算错误。所以n阶行列式的计算我们用定义来计算。

二、三阶行列式按行展开

为了引入n阶行列式,我们先来回顾一下三阶行列式的展开。
∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}= a11a21a31a12a22a32a13a23a33 =
a 11 × a 22 × a 33 + a 12 × a 23 × a 31 + a 13 × a 21 × a 32 − a_{11} \times a_{22} \times a_{33}+ a_{12} \times a_{23} \times a_{31}+ a_{13} \times a_{21} \times a_{32}- a11×a22×a33+a12×a23×a31+a13×a21×a32
a 13 × a 22 × a 31 − a 12 × a 21 × a 33 − a 11 × a 23 × a 32 a_{13} \times a_{22} \times a_{31}- a_{12} \times a_{21} \times a_{33}- a_{11} \times a_{23} \times a_{32} a13×a22×a31a12×a21×a33a11×a23×a32
行标:都是123,所以是都是标准排列
列标:取排列的所有可能

列标        逆序数        奇偶性
+123             0             偶
+231             2             偶
+312             2             偶
------------------------------------
-321             3             奇
-213             1             奇
-132             1             奇

通过观察发现,前三行的对应的列标的逆序数都是偶数,三个元素相乘的结果相加。而后三行对应列标的逆序数都是奇数,三个元素相乘的结果相减。

总结

行标取标准排列
列标取排列的所有可能
从不同行不同列取出3个元素相乘
符号是由列标排列的奇偶性决定的

三、n阶行列式的按行展开

定义

n阶行列式的表现形式
∣ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ∣ \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} a11a21an1a12a22an2a1na2nann
n阶行列式的元素表现形式
a 1 j 1 a 2 j 2 ⋯ a n j n a_{1j_{1}}a_{2j_{2}} \cdots a_{nj_{n}} a1j1a2j2anjn
行标我们可知是标准排列, 123 ⋯ n 123 \cdots n 123n
列标我们不知道,所以用符号表示 j 1 j 2 ⋯ j n j_{1}j_{2} \cdots j_{n} j1j2jn
所以n阶行列式的结果:
∑ j 1 j 2 ⋯ j n ( − 1 ) N ( j 1 j 2 … j n ) a 1 j 1 a 2 j 2 ⋯ a n j n \sum\limits_{j_{1}j_{2} \cdots j_{n}}{(-1)^{N(j_{1}j_{2} \dots j_{n})}}a_{1j_{1}}a_{2j_{2}} \cdots a_{nj_{n}} j1j2jn(1)N(j1j2jn)a1j1a2j2anjn
可以简写成:D= ∣ a i j ∣ \begin{vmatrix}a_{ij}\end{vmatrix} aij

总结

共有n!项
行标取标准排列
列标取排列的所有可能
从不同行不同列取出n个元素相乘
符号是由列标排列的奇偶性决定的

注意

n阶行列式同二阶或三阶一样都有主对角线和次对角线
1阶行列式的结果是他自己: ∣ a ∣ = a \begin{vmatrix}a\end{vmatrix}=a a =a

例题

例1

∣ 1 2 3 8 1 1 0 4 2 2 0 5 1 0 0 9 ∣ \begin{vmatrix} 1 & 2 & 3 & 8 \\ 1 & 1 & 0 & 4 \\ 2 & 2 & 0 & 5 \\ 1 & 0 & 0 & 9 \end{vmatrix} 1121212030008459
行按标准排列取先取第1行再取第2行再取第3行最后取第4行。
列标我们取所有排列,共4!=24种。排列有:

列标逆序数符号
12340+
12431-
13241-
13422+
⋮ \vdots ⋮ \vdots ⋮ \vdots

①. 我们先取第1行第1列,第2行第2列,第3行第3列,第4行第4列。根据逆序数0为偶数可知符号为正
1 × 1 × 0 × 9 1\times1\times0\times9 1×1×0×9
②. 再取第1行第1列,第2行第2列,第3行第4列,第4行第3列。符号我们可以通过数逆序数,也可以通过另一种方法来确定,通过观察我们发现1243和1234对换了3和4的位置。根据上一节学过的定理,对换奇次位置变符号,所以符号为负
1 × 1 × 0 × 9 − 1 × 1 × 5 × 0 1\times1\times0\times9-1\times1\times5\times0 1×1×0×91×1×5×0
③. 再取第1行第1列,第2行第3列,第3行第2列,第4行第4列。根据②观察,2和3发生了对换,所以符号为负
1 × 1 × 0 × 9 − 1 × 1 × 5 × 0 − 1 × 0 × 2 × 9 1\times1\times0\times9-1\times1\times5\times0-1\times0\times2\times9 1×1×0×91×1×5×01×0×2×9
……根据以上过程即可求出该4阶行列式的值,因为要计算24个元素,所以我们计算也很少通过这种原始定义来算。

例2

∣ 0 2 0 0 0 0 3 0 0 0 0 4 1 0 0 0 ∣ \begin{vmatrix} 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 4 \\ 1 & 0 & 0 & 0 \end{vmatrix} 0001200003000040
这种特殊的行列式我们就可以用原始定义来做,通过观察我们发现只有2341这几个元素相乘不为0.列标是2341,逆序数是3。
= ( − 1 ) N ( 2341 ) 2 × 3 × 4 × 1 = − 24 =(-1)^{N(2341)}2\times3\times4\times1=-24 =(1)N(2341)2×3×4×1=24

1.下三角行列式(主对角线)

∣ a 11 0 0 ⋯ 0 a 21 a 22 0 ⋯ 0 ⋮ ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ ⋯ a n n ∣ \begin{vmatrix} a_{11} & 0 & 0 &\cdots & 0 \\ a_{21} & a_{22} & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & \cdots & a_{nn} \end{vmatrix} a11a21an10a22an20000ann
第1行除了第1列其他都是0,我们只能去取第1行第1列。第2行,因为取值要取不同行不同列,所以只能取第2行第2列。以此类推,所以最终是 a 11 × a 22 ⋯ a n n a_{11} \times a_{22} \cdots a_{nn} a11×a22ann。列标是 12 ⋯ n 12\cdots n 12n,为标准排列所以逆序数是0。
下三角行列式的值:主对角线元素相乘 a 11 × a 22 ⋯ a n n a_{11} \times a_{22} \cdots a_{nn} a11×a22ann

2.上三角行列式(主对角线)

∣ a 11 a 12 a 13 ⋯ a 1 n 0 a 22 a 23 ⋯ a 2 n ⋮ ⋮ ⋮ ⋱ ⋮ 0 0 0 0 a n n ∣ \begin{vmatrix} a_{11} & a_{12} & a_{13} &\cdots & a_{1n} \\ 0 & a_{22} & a_{23} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & a_{nn} \end{vmatrix} a1100a12a220a13a2300a1na2nann
第1行很多都可以取,第2行除了第1列都可以取,其他的都先放着。我们先取最后一行,除了最后一列,其他都是0。所以我们取 a n n a_{nn} ann。倒数第二行就不能去最后一列了,只能去倒数第二列 a n − 1 n − 1 a_{n-1n-1} an1n1,以此类推。最后还是 a 11 × a 22 ⋯ a n n a_{11} \times a_{22} \cdots a_{nn} a11×a22ann。注意,这里我们并不是倒过来取,而是倒过来推论。取值的时候还是要遵循行数为标准排列的顺序来取
上三角行列式的值:主对角线元素相乘 a 11 × a 22 ⋯ a n n a_{11} \times a_{22} \cdots a_{nn} a11×a22ann

3.对角型行列式(主对角线)

∣ a 11 0 0 ⋯ 0 0 a 22 0 ⋯ 0 ⋮ ⋮ ⋮ ⋱ ⋮ 0 0 0 0 a n n ∣ \begin{vmatrix} a_{11} & 0 & 0 &\cdots & 0 \\ 0 & a_{22} & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & a_{nn} \end{vmatrix} a11000a220000000ann
这个不用多说,依然是
对角型行列式的值:主对角线元素相乘 a 11 × a 22 ⋯ a n n a_{11} \times a_{22} \cdots a_{nn} a11×a22ann

4.下三角行列式(次对角线)

∣ 0 0 0 ⋯ a 1 n 0 0 0 a 2   n − 1 a 2 n ⋮ ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ ⋯ a n n ∣ \begin{vmatrix} 0 & 0 & 0 &\cdots & a_{1n} \\ 0 & 0 & 0 & a_{2 \ n-1} & a_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & \cdots & a_{nn} \end{vmatrix} 00an100an200a2 n1a1na2nann
取值为 a 1 n × a 2   n − 1 ⋯ a n 1 a_{1n} \times a_{2 \ n-1} \cdots a_{n1} a1n×a2 n1an1,逆序数为 n × ( n − 1 ) ⋯ 3 × 2 × 1 = n × ( n − 1 ) 2 n \times (n-1) \cdots 3 \times 2 \times 1 = \frac{n\times(n-1)}{2} n×(n1)3×2×1=2n×(n1)
结果 ( − 1 ) n × ( n − 1 ) 2 a 1 n × a 2   n − 1 ⋯ a n 1 (-1)^{\frac{n\times(n-1)}{2}}a_{1n} \times a_{2 \ n-1} \cdots a_{n1} (1)2n×(n1)a1n×a2 n1an1

5.上三角行列式(次对角线)

∣ a 11 a 12 ⋯ ⋯ a 1 n a 21 a 21 ⋯ a 2   n − 1 0 ⋮ ⋮ ⋮ ⋱ ⋮ a n 1 0 ⋯ ⋯ 0 ∣ \begin{vmatrix} a_{11} & a_{12} & \cdots &\cdots & a_{1n} \\ a_{21} & a_{21} & \cdots & a_{2 \ n-1} & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & 0 & \cdots & \cdots & 0 \end{vmatrix} a11a21an1a12a210a2 n1a1n00
同上取值为 a 1 n × a 2   n − 1 ⋯ a n 1 a_{1n} \times a_{2 \ n-1} \cdots a_{n1} a1n×a2 n1an1,逆序数为 n × ( n − 1 ) ⋯ 3 × 2 × 1 = n × ( n − 1 ) 2 n \times (n-1) \cdots 3 \times 2 \times 1 = \frac{n\times(n-1)}{2} n×(n1)3×2×1=2n×(n1)
结果 ( − 1 ) n × ( n − 1 ) 2 a 1 n × a 2   n − 1 ⋯ a n 1 (-1)^{\frac{n\times(n-1)}{2}}a_{1n} \times a_{2 \ n-1} \cdots a_{n1} (1)2n×(n1)a1n×a2 n1an1

6.对角型行列式(次对角线)

∣ 0 ⋯ ⋯ ⋯ a 1 n 0 0 ⋯ a 2   n − 1 0 ⋮ ⋮ ⋮ ⋱ ⋮ a n 1 0 ⋯ ⋯ 0 ∣ \begin{vmatrix} 0 & \cdots & \cdots &\cdots & a_{1n} \\ 0 & 0 & \cdots & a_{2 \ n-1} & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & 0 & \cdots & \cdots & 0 \end{vmatrix} 00an100a2 n1a1n00
同上取值为 a 1 n × a 2   n − 1 ⋯ a n 1 a_{1n} \times a_{2 \ n-1} \cdots a_{n1} a1n×a2 n1an1,逆序数为 n × ( n − 1 ) ⋯ 3 × 2 × 1 = n × ( n − 1 ) 2 n \times (n-1) \cdots 3 \times 2 \times 1 = \frac{n\times(n-1)}{2} n×(n1)3×2×1=2n×(n1)
结果 ( − 1 ) n × ( n − 1 ) 2 a 1 n × a 2   n − 1 ⋯ a n 1 (-1)^{\frac{n\times(n-1)}{2}}a_{1n} \times a_{2 \ n-1} \cdots a_{n1} (1)2n×(n1)a1n×a2 n1an1

五、n阶行列式的按列展开

定义:列标取标准排列,行标去所有排列可能,不同行不同列取n个元素相乘,符号由行标排列的逆序数的奇偶性决定
∑ i 1 i 2 ⋯ i n ( − 1 ) N ( i 1 i 2 … i n ) a i 1 1 a i 2 2 ⋯ a i n n \sum\limits_{i_{1}i_{2} \cdots i_{n}}{(-1)^{N(i_{1}i_{2} \dots i_{n})}}a_{i_{1}1}a_{i_{2}2}\cdots a_{i_{n}n} i1i2in(1)N(i1i2in)ai11ai22ainn

6、n阶行列式既不按行也不按列展开

这种很少用到,考试也只会考行列式的符号
∑ ( − 1 ) N ( i 1 i 2 … i n ) + N ( j 1 j 2 … j n ) a i 1 j 1 a i 2 j 2 ⋯ a i n j n \sum\limits{(-1)^{N(i_{1}i_{2} \dots i_{n})+N(j_{1}j_{2} \dots j_{n})}}a_{i_{1}j_{1}}a_{i_{2}j_{2}}\cdots a_{i_{n}j_{n}} (1)N(i1i2in)+N(j1j2jn)ai1j1ai2j2ainjn


总结

  1. 二阶行列式和三阶行列式可以通过画线来解
  2. n阶行列式有可以通过3种定义来解,分别是:按行展开、按列展开、既不按行也不按列展开
  • 0
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: MIT(麻省理工学院)的线性代数公开课非常详细和全面,这门课程是由麻省理工学院的教授Gilbert Strang主讲的。课程内容涵盖了线性代数的基本概念和应用,将线性代数的理论与实践相结合。 这门课程的笔记非常详细,内容包括了课堂讲义、示例问题的详细解析、证明过程和习题答案等等。课程的整个结构非常清晰,从基础的向量、矩阵和行列式开始讲解,逐渐深入到线性方程组、特征值和特征向量、相似矩阵等内容。 在笔记中,每个概念和理论都会进行详细的解释和证明,帮助学生更好地理解和掌握相关知识。同时,笔记还提供了丰富的示例和习题,让学生通过实际的问题来巩固和应用所学知识。 另外,笔记中还有大量的图表、图示和实例来帮助学生直观地理解和记忆各种概念和算法。特别是对于抽象的概念,通过图形化的解释可以更好地帮助学生理解。 总之,MIT的线性代数公开课的笔记内容非常详细和全面,适合对线性代数感兴趣的学生参考。无论是作为学习线性代数的资料,还是作为复习和巩固知识的辅助材料,这些笔记都是非常有价值的资源。无论是在理论还是应用层面,学生都能够通过这些笔记全面地掌握线性代数的知识。 ### 回答2: MIT线性代数公开课是由麻省理工学院开设的一门线性代数课程,涵盖了从基础概念到高技巧的全方位学习内容。下面是对该课程的笔记总结: 该课程由吉尔伯特•斯特朗(Gilbert Strang)教授主讲,他是一位著名的数学家和教育家,为学生提供了一种简单而深入的学习方法。 该课程共分为26节课,每节课都有对应的讲义和视频,以及一些习题和作业,使学生能够更好地掌握课程内容。 课程首先介绍了向量和矩阵的基础知识,讲解了向量的加法、减法和数乘运算,以及矩阵的加法、减法和乘法运算,并且讲解了这些运算的几何意义。然后,课程进一步探讨了线性方程组的求解方法,包括高斯消元法和矩阵的逆运算。这些内容为后续课程奠定了基础。 接下来,课程介绍了行列式和特征值的概念,并讲解了如何计算行列式和求解特征值和特征向量。特征值和特征向量在矩阵的变换中起着重要的作用,因此对于理解线性代数的应用非常重要。 随后,课程进一步深入探讨了线性变换、正交性和投影等概念,以及特殊矩阵的性质,如对称矩阵和正定矩阵。这些内容使学生能够更好地理解线性代数在实际应用中的重要性。 最后,课程介绍了一些高级线性代数的内容,如奇异值分解和特殊矩阵的标准形式。这些内容对于研究生和专业领域的学生尤为重要。 总的来说,MIT线性代数公开课提供了一套完整、系统的线性代数学习资源,不仅适用于初学者,还可以帮助已经具备一定线性代数基础的学生深入学习。课程中的讲义和视频内容清晰明了,配有大量实例和习题,以及讲解中的实时演算,确保学生能够深入理解和掌握线性代数的核心概念和技巧。无论是在学术研究还是职业发展中,这门课程都具有重要的参考价值。 ### 回答3: 麻省理工学院(MIT)的线性代数公开课是一门非常出色的公开课,内容十分详细并且完整。以下是对该公开课的超详细笔记。 该公开课以线性代数为主题,通过教授线性代数的基本概念、理论和应用,帮助学生建立起对线性代数的深入理解和应用能力。 课程从基本概念讲起,首先介绍了向量和矩阵的定义、性质和操作。然后深入讲解了线性方程组的解法,包括高斯消元法和矩阵的行列式。接下来,课程探讨了向量空间和矩阵空间的性质及其应用,如子空间、基、维数等概念。进一步,课程讲解了线性变换和特征值、特征向量的概念及其重要性。 在讲解了线性代数的基本理论后,课程引入了矩阵分解和特殊矩阵的概念,如LU分解、QR分解和特征值分解等。随后,课程介绍了正交向量、正交矩阵和正交变换的概念及其在几何变换、信号处理等领域的应用。 此外,课程还涉及了线性代数在图论、最小二乘问题、数据压缩等领域的应用。通过实例和案例分析,课程帮助学生将线性代数的理论知识与实际问题相结合,提高解决实际问题的能力。 值得一提的是,该公开课还通过演示和实验的方式,让学生亲自动手进行线性代数的计算和应用,培养了学生的实践能力和创造力。 总的来说,麻省理工学院的线性代数公开课以其详细的内容和完整的知识体系,在教授线性代数知识和培养学生的应用能力方面取得了优异的成绩。无论是对于想要深入学习线性代数的学生,还是对于希望提高问题解决能力的人群,这门公开课都是非常推荐的选择。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值