(邱维声)高等代数课程笔记:n 阶行列式的定义

2.2 n 阶行列式的定义

\quad 上一节,我们已经定义了 二阶行列式,并根据二阶行列式的特征,抽象出了 n 元排列 的概念。举一个示例,可以看到:二阶行列式可以通过二元排列表示。

例 1

∣ a 11 a 12 a 21 a 22 ∣ = ∑ j 1 j 2 ( − 1 ) τ ( j 1 j 2 ) a 1 j 1 a 2 j 2 \left|\begin{matrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{matrix}\right| = \sum_{j_{1}j_{2}} (-1)^{\tau(j_{1}j_{2})}{a_{1 j_{1}}a_{2 j_{2}}} a11a21a12a22 =j1j2(1)τ(j1j2)a1j1a2j2

其中 τ ( j 1 j 2 ) \tau(j_{1}j_{2}) τ(j1j2) 为二元排列。

#

\quad 受此启发,下面利用 n \color{blue} n n 元排列,推广出一般的 n \color{blue} n n 阶行列式 的概念。

定义 1. n 阶行列式:我们将一般的 n \color{blue} n n 阶行列式 定义为:

∣ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ = ∑ j 1 j 2 ⋯ j n ( − 1 ) τ ( j 1 j 2 ⋯ j n ) a 1 j 1 a 2 j 2 ⋯ a n j n \left| \begin{matrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots &a_{nn} \end{matrix} \right| = \sum_{j_{1} j_{2} \cdots j_{n}} (-1)^{\tau(j_{1}j_{2}\cdots j_{n})} a_{1j_{1}}a_{2j_{2}} \cdots a_{nj_{n}} a11a21an1a12a22an2a1na2nann =j1j2jn(1)τ(j1j2jn)a1j1a2j2anjn

行列式的值为 n ! n! n! 项的代数和。其中,每一项都是来自不同行、不同列的 n n n 个元素的乘积,每一项按 行指标自然序 排好位置。且:

  • 若某项的 列指标 所成 n n n 元排列为 奇排列,则该项带 负号
  • 若某项的 列指标 所成 n n n 元排列为 偶排列,则该项带 正号

\quad 另外可以看到, n n n 阶行列式与 n n n 级矩阵在形式上非常相似。事实上,在后续内容中,我们经常会用到行列式来研究矩阵。为此,我们作以下说明:

n 级矩阵与 n 阶行列式:设矩阵 A A A n n n 级方阵,具有如下形式:

( a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ) \left( \begin{matrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots &a_{nn} \end{matrix} \right) a11a21an1a12a22an2a1na2nann

可简记作 A = ( a i j ) A = (a_{ij}) A=(aij),其中 a i j a_{ij} aij A A A 的第 ( i , j ) (i,j) (i,j) 元,称

∣ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ \left| \begin{matrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots &a_{nn} \end{matrix} \right| a11a21an1a12a22an2a1na2nann

A A A n n n 阶行列式,记作 ∣ A ∣ |A| A det ⁡   A \det ~ A det A.

例 2:根据 定义 1,很容易写出一阶行列式、二阶行列式、三阶行列式等。

  • 一阶行列式: ∣ a ∣ = a |a|=a a=a,注意,不要与绝对值好混淆;
  • 二阶行列式: ∣ a 11 a 12 a 21 a 22 ∣ = a 11 a 22 − a 12 a 21 \left|\begin{matrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{matrix}\right| = a_{11}a_{22} - a_{12}a_{21} a11a21a12a22 =a11a22a12a21;
  • 三阶行列式: ∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ = a 11 a 22 a 33 + a 12 a 23 a 31 + a 13 a 21 a 32 − a 11 a 23 a 32 − a 12 a 21 a 33 − a 13 a 21 a 32 \left|\begin{matrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{matrix}\right| = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} -a_{13}a_{21}a_{32} a11a21a31a12a22a32a13a23a33 =a11a22a33+a12a23a31+a13a21a32a11a23a32a12a21a33a13a21a32.

#

\quad 有了一般的 n n n 阶行列式的定义,自然会想到将二阶行列式的相关内容推广至 n n n 阶行列式。下面进行这样一项工作。

主对角线与副对角线 a 11 , a 22 , ⋯   , a n n a_{11},a_{22},\cdots,a_{nn} a11,a22,,ann主对角线 a 1 n , a 2 , n − 1 , ⋯   , a n 1 a_{1n},a_{2,n-1},\cdots,a_{n1} a1n,a2,n1,,an1副对角线

上三角形行列式:主对角线下方的元素全为零的行列式称为 上三角形行列式,即形如:

∣ a 11 a 12 ⋯ a 1 n 0 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ 0 0 ⋯ a n n ∣ \left| \begin{matrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots &a_{nn} \end{matrix} \right| a1100a12a220a1na2nann

命题 1:上三角形行列式的值等于主对角线上 n n n 个元素的乘积。

证明:由 定义 1 立得。

#

下三角形行列式:主对角线上方的元素全为零的行列式称为 上三角形行列式,即形如:

∣ a 11 0 ⋯ 0 a 21 a 22 ⋯ 0 ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ \left| \begin{matrix} a_{11} & 0 & \cdots &0 \\ a_{21} & a_{22} & \cdots &0\\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots &a_{nn} \end{matrix} \right| a11a21an10a22an200ann

命题 2:下三角形行列式的值等于主对角线上 n n n 个元素的乘积。

证明:由 定义 1 立得。

#

\quad 综合 命题 1命题 2,即有 命题 3

命题 3:三角形行列式的等等于主对角线上 n n n 个元素的乘积。

\quad 回顾一下 定义 1,对于一般的 n n n 阶行列式,我们有:

∣ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ = ∑ j 1 j 2 ⋯ j n ( − 1 ) τ ( j 1 j 2 ⋯ j n ) a 1 j 1 a 2 j 2 ⋯ a n j n \left| \begin{matrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots &a_{nn} \end{matrix} \right| = \sum_{j_{1} j_{2} \cdots j_{n}} (-1)^{\tau(j_{1}j_{2}\cdots j_{n})} a_{1j_{1}}a_{2j_{2}} \cdots a_{nj_{n}} a11a21an1a12a22an2a1na2nann =j1j2jn(1)τ(j1j2jn)a1j1a2j2anjn

\quad 由数的运算法则乘法交换律,对于给定的 n n n 元排列 j 1 , j 2 , ⋯   , j n j_{1},j_{2},\cdots,j_{n} j1,j2,,jn,可以按任一次序重排 a 1 j 1 a 2 j 2 ⋯ a n j n a_{1j_{1}}a_{2j_{2}} \cdots a_{nj_{n}} a1j1a2j2anjn。一般地,不妨设其重排后为 a i 1 k 1 a i 2 k 2 ⋯ a i n k n a_{i_{1} k_{1}} a_{i_{2} k_{2} }\cdots a_{i_{n} k_{n}} ai1k1ai2k2ainkn.

\quad 思考:符号 ( − 1 ) τ ( j 1 j 2 ⋯ j n ) (-1)^{\tau(j_{1} j_{2} \cdots j_{n})} (1)τ(j1j2jn) 是否与新的排列 i 1 , i 2 , ⋯   , i n i_{1},i_{2},\cdots,i_{n} i1,i2,,in k 1 , k 2 , ⋯   , k n k_{1},k_{2},\cdots,k_{n} k1,k2,,kn 有关?

例 3:任取三阶行列式 ∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ \left|\begin{matrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{matrix}\right| a11a21a31a12a22a32a13a23a33 的一项,比如:

( − 1 ) τ ( 231 ) a 12 a 23 a 31 = ( − 1 ) τ ( 231 ) a 23 a 12 a 31 = ( − 1 ) τ ( 213 ) + τ ( 321 ) a 23 a 12 a 31 \begin{aligned} (-1)^{\tau(231)}a_{12}a_{23}a_{31} &= (-1)^{\tau(231)} a_{23} a_{12} a_{31} \\ &= (-1)^{\tau(213) + \tau(321)} a_{23} a_{12} a_{31} \end{aligned} (1)τ(231)a12a23a31=(1)τ(231)a23a12a31=(1)τ(213)+τ(321)a23a12a31

#

\quad 例 3 可作如下猜测:对于 n n n 阶行列式中的任一项 a 1 j 1 a 2 j 2 ⋯ a n j n a_{1 j_{1}} a_{2 j_{2}} \cdots a_{n j_{n}} a1j1a2j2anjn,若经过 S S S 次对换变为 a i 1 k 1 a i 2 k 2 ⋯ a i n k n a_{i_{1} k_{1}} a_{i_{2} k_{2}} \cdots a_{i_{n} k_{n}} ai1k1ai2k2ainkn,则成立:

( − 1 ) τ ( j 1 j 2 ⋯ j n ) a 1 j 1 a 2 j 2 ⋯ a n j n = ( − 1 ) τ ( i 1 i 2 ⋯ i n ) + τ ( k 1 k 2 ⋯ k n ) a i 1 k 1 a i 2 k 2 ⋯ a i n k n (-1)^{\tau(j_{1}j_{2}\cdots j_{n})} a_{1j_{1}}a_{2j_{2}} \cdots a_{nj_{n}} = (-1)^{\tau(i_{1} i_{2} \cdots i_{n}) + \tau(k_{1} k_{2} \cdots k_{n})} a_{i_{1} k_{1}} a_{i_{2} k_{2}} \cdots a_{i_{n} k_{n}} (1)τ(j1j2jn)a1j1a2j2anjn=(1)τ(i1i2in)+τ(k1k2kn)ai1k1ai2k2ainkn

\quad 上述猜想是正确的,理由如下:

\quad a 1 j 1 a 2 j 2 ⋯ a n j n a_{1 j_{1}} a_{2 j_{2}} \cdots a_{n j_{n}} a1j1a2j2anjn 经过 S S S 次对换变为 a i 1 k 1 a i 2 k 2 ⋯ a i n k n a_{i_{1} k_{1}} a_{i_{2} k_{2}} \cdots a_{i_{n} k_{n}} ai1k1ai2k2ainkn.

\quad 在这 S S S 次对换的作用下,

  • 行指标 1 , 2 , ⋯   , n → S  次对换 i 1 , i 2 , ⋯   , i n 1,2,\cdots,n \xrightarrow{S ~ 次对换} i_{1},i_{2},\cdots,i_{n} 1,2,,nS 次对换 i1,i2,,in,因此: ( − 1 ) S = ( − 1 ) τ ( i 1 i 2 ⋯ i n ) (-1)^{S} = (-1)^{\tau(i_{1}i_{2}\cdots i_{n})} (1)S=(1)τ(i1i2in)
  • 列指标 j 1 , j 2 , ⋯   , j n → 同样的  S  次对换 k 1 , k 2 , ⋯   , k n j_{1},j_{2},\cdots,j_{n} \xrightarrow{同样的 ~ S ~ 次对换} k_{1},k_{2},\cdots,k_{n} j1,j2,,jn同样的 S 次对换 k1,k2,,kn,因此: ( − 1 ) τ ( j 1 j 2 ⋯ j n ) ⋅ ( − 1 ) S = ( − 1 ) τ ( k 1 k 2 ⋯ k n ) (-1)^{\tau(j_{1}j_{2}\cdots j_{n})} \cdot (-1)^{S}= (-1)^{\tau(k_{1}k_{2}\cdots k_{n})} (1)τ(j1j2jn)(1)S=(1)τ(k1k2kn).

于是有:

( − 1 ) τ ( i 1 i 2 ⋯ i n ) + τ ( k 1 k 2 ⋯ k n ) = ( − 1 ) S ⋅ ( − 1 ) τ ( k 1 k 2 ⋯ k n ) = ( − 1 ) S ⋅ ( − 1 ) τ ( j 1 j 2 ⋯ j n ) ⋅ ( − 1 ) S = ( − 1 ) τ ( j 1 j 2 ⋯ j n ) \begin{aligned} (-1)^{\tau(i_{1} i_{2} \cdots i_{n}) + \tau(k_{1} k_{2} \cdots k_{n})} &=(-1)^{S} \cdot (-1)^{\tau(k_{1} k_{2} \cdots k_{n})} \\ &= (-1)^{S} \cdot (-1)^{\tau(j_{1}j_{2}\cdots j_{n})} \cdot (-1)^{S} \\ &= (-1)^{\tau(j_{1}j_{2}\cdots j_{n})} \end{aligned} (1)τ(i1i2in)+τ(k1k2kn)=(1)S(1)τ(k1k2kn)=(1)S(1)τ(j1j2jn)(1)S=(1)τ(j1j2jn)

#

\quad 综上所述,对于 n n n 级矩阵的行列式 ∣ A ∣ |A| A,若给定其行指标的一个排列 i 1 , i 2 , ⋯   , i n i_{1},i_{2},\cdots,i_{n} i1,i2,,in,则有

∣ A ∣ = ∑ i 1 i 2 ⋯ i n ( − 1 ) τ ( i 1 i 2 ⋯ i n ) + τ ( k 1 k 2 ⋯ k n ) a i 1 k 1 a i 2 k 2 ⋯ a i n k n |A| = \sum_{i_{1} i_{2} \cdots i_{n}}(-1)^{\tau(i_{1} i_{2} \cdots i_{n}) + \tau(k_{1} k_{2} \cdots k_{n})} a_{i_{1} k_{1}} a_{i_{2} k_{2}} \cdots a_{i_{n} k_{n}} A=i1i2in(1)τ(i1i2in)+τ(k1k2kn)ai1k1ai2k2ainkn

或者,给定其列指标的一个排列 k 1 k 2 ⋯ k n k_{1} k_{2} \cdots k_{n} k1k2kn,则有

∣ A ∣ = ∑ k 1 k 2 ⋯ k n ( − 1 ) τ ( i 1 i 2 ⋯ i n ) + τ ( k 1 k 2 ⋯ k n ) a i 1 k 1 a i 2 k 2 ⋯ a i n k n |A| = \sum_{k_{1} k_{2} \cdots k_{n}}(-1)^{\tau(i_{1} i_{2} \cdots i_{n}) + \tau(k_{1} k_{2} \cdots k_{n})} a_{i_{1} k_{1}} a_{i_{2} k_{2}} \cdots a_{i_{n} k_{n}} A=k1k2kn(1)τ(i1i2in)+τ(k1k2kn)ai1k1ai2k2ainkn

特别地,有:

∣ A ∣ = ∑ i 1 i 2 ⋯ i n ( − 1 ) τ ( i 1 i 2 ⋯ i n ) a i 1 1 a i 2 2 ⋯ a i n n |A| = \sum_{i_{1} i_{2} \cdots i_{n}} (-1)^{\tau(i_{1}i_{2} \cdots i_{n})} a_{i_{1} 1} a_{i_{2} 2} \cdots a_{i_{n} n} A=i1i2in(1)τ(i1i2in)ai11ai22ainn

\quad 可以看到,行列式的行与列的“地位”是相同的!

参考

  • 邱维声. 高等代数课程。
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值