题目: 证明
n
n
n 倍角公式
cos
n
x
=
∣
cos
x
1
0
⋯
0
0
1
2
cos
x
1
⋯
0
0
0
1
2
cos
x
⋯
0
0
⋮
⋮
⋮
⋮
⋮
0
0
0
⋯
2
cos
x
1
0
0
0
⋯
1
2
cos
x
∣
n
×
n
(1)
\cos nx= \begin{vmatrix} \cos x&1 & 0 &\cdots&0&0\\ 1 &2\cos x&1 &\cdots&0&0\\ 0 &1 &2\cos x &\cdots&0&0\\ \vdots&\vdots&\vdots&&\vdots&\vdots\\ 0&0&0&\cdots&2\cos x&1\\ 0&0&0&\cdots&1&2\cos x \end{vmatrix}_{n\times n}\tag{1}
cosnx=∣∣∣∣∣∣∣∣∣∣∣∣∣cosx10⋮0012cosx1⋮00012cosx⋮00⋯⋯⋯⋯⋯000⋮2cosx1000⋮12cosx∣∣∣∣∣∣∣∣∣∣∣∣∣n×n(1)
sin
n
x
=
∣
sin
x
0
0
⋯
0
0
0
2
cos
x
1
⋯
0
0
0
1
2
cos
x
⋯
0
0
⋮
⋮
⋮
⋮
⋮
0
0
0
⋯
2
cos
x
1
0
0
0
⋯
1
2
cos
x
∣
n
×
n
(2)
\sin nx= \begin{vmatrix} \sin x&0 & 0 &\cdots&0&0\\ 0 &2\cos x&1 &\cdots&0&0\\ 0 &1 &2\cos x &\cdots&0&0\\ \vdots&\vdots&\vdots&&\vdots&\vdots\\ 0&0&0&\cdots&2\cos x&1\\ 0&0&0&\cdots&1&2\cos x \end{vmatrix}_{n\times n}\tag{2}
sinnx=∣∣∣∣∣∣∣∣∣∣∣∣∣sinx00⋮0002cosx1⋮00012cosx⋮00⋯⋯⋯⋯⋯000⋮2cosx1000⋮12cosx∣∣∣∣∣∣∣∣∣∣∣∣∣n×n(2)
参考答案: 先证明
cos ( n + 1 ) x = 2 cos n x cos x − cos ( n − 1 ) x (3) \cos(n+1)x=2\cos nx\cos x-\cos(n-1)x\tag{3} cos(n+1)x=2cosnxcosx−cos(n−1)x(3)
因为
cos ( n + 1 ) x + cos ( n − 1 ) x = cos n x cos x − sin n x sin x + cos n x cos x + sin n x sin x = 2 cos n x cos x \begin{aligned}\cos(n+1)x+\cos(n-1)x&=\cos nx\cos x-\sin nx\sin x+\cos nx\cos x+\sin nx\sin x\\ &=2\cos nx\cos x\end{aligned} cos(n+1)x+cos(n−1)x=cosnxcosx−sinnxsinx+cosnxcosx+sinnxsinx=2cosnxcosx从而移项即可证明原式 ( 3 ) (3) (3)
使用数学归纳法证明式 ( 1 ) (1) (1)
当
n
=
1
n=1
n=1 时,式
(
1
)
(1)
(1) 显然成立,假设当
n
⩽
k
n\leqslant k
n⩽k 式,式
(
1
)
(1)
(1) 成立,那么当
n
=
k
+
1
n=k+1
n=k+1 时
∣
cos
x
1
0
⋯
0
0
1
2
cos
x
1
⋯
0
0
0
1
2
cos
x
⋯
0
0
⋮
⋮
⋮
⋮
⋮
0
0
0
⋯
2
cos
x
1
0
0
0
⋯
1
2
cos
x
∣
(
k
+
1
)
×
(
k
+
1
)
A
=
按最后一行展开
2
cos
x
∣
cos
x
1
0
⋯
0
1
2
cos
x
1
⋯
0
0
1
2
cos
x
⋯
0
⋮
⋮
⋮
⋮
0
0
0
⋯
2
cos
x
∣
(
k
×
k
−
∣
cos
x
1
0
⋯
0
0
1
2
cos
x
1
⋯
0
0
0
1
2
cos
x
⋯
0
0
⋮
⋮
⋮
⋮
⋮
0
0
0
⋯
2
cos
x
1
0
0
0
⋯
1
2
cos
x
∣
(
k
−
1
)
×
(
k
−
1
)
=
2
cos
x
cos
k
x
−
cos
(
k
−
1
)
x
=
cos
(
n
+
1
)
x
\begin{aligned} \begin{vmatrix} \cos x&1 & 0 &\cdots&0&0\\ 1 &2\cos x&1 &\cdots&0&0\\ 0 &1 &2\cos x &\cdots&0&0\\ \vdots&\vdots&\vdots&&\vdots&\vdots\\ 0&0&0&\cdots&2\cos x&1\\ 0&0&0&\cdots&1&2\cos x \end{vmatrix}_{(k+1)\times (k+1)}A&\xlongequal{\text{按最后一行展开}}2\cos x\begin{vmatrix} \cos x&1 & 0 &\cdots&0\\ 1 &2\cos x&1 &\cdots&0\\ 0 &1 &2\cos x &\cdots&0\\ \vdots&\vdots&\vdots&&\vdots\\ 0&0&0&\cdots&2\cos x\\ \end{vmatrix}_{(k\times k}-\begin{vmatrix} \cos x&1 & 0 &\cdots&0&0\\ 1 &2\cos x&1 &\cdots&0&0\\ 0 &1 &2\cos x &\cdots&0&0\\ \vdots&\vdots&\vdots&&\vdots&\vdots\\ 0&0&0&\cdots&2\cos x&1\\ 0&0&0&\cdots&1&2\cos x \end{vmatrix}_{(k-1)\times (k-1)}\\ &=2\cos x\cos kx-\cos(k-1)x\\ &=\cos(n+1)x\end{aligned}
∣∣∣∣∣∣∣∣∣∣∣∣∣cosx10⋮0012cosx1⋮00012cosx⋮00⋯⋯⋯⋯⋯000⋮2cosx1000⋮12cosx∣∣∣∣∣∣∣∣∣∣∣∣∣(k+1)×(k+1)A按最后一行展开2cosx∣∣∣∣∣∣∣∣∣∣∣cosx10⋮012cosx1⋮0012cosx⋮0⋯⋯⋯⋯000⋮2cosx∣∣∣∣∣∣∣∣∣∣∣(k×k−∣∣∣∣∣∣∣∣∣∣∣∣∣cosx10⋮0012cosx1⋮00012cosx⋮00⋯⋯⋯⋯⋯000⋮2cosx1000⋮12cosx∣∣∣∣∣∣∣∣∣∣∣∣∣(k−1)×(k−1)=2cosxcoskx−cos(k−1)x=cos(n+1)x
符合式
(
1
)
(1)
(1)
( 2 ) (2) (2) 式同理可证
2021年2月10日12:54:22