数论 I(整除性)
>> 整除
定义
设 a , b ∈ Z a,b\in \mathbb{Z} a,b∈Z,并且 a ≠ 0 a\neq0 a=0, ∃ q ∈ Z \exists \ q\in \mathbb{Z} ∃ q∈Z 使得 a q = b aq=b aq=b,则称 b b b 能被 a a a 整除(记做 a ∣ b a\mid b a∣b),否则称 b b b 不能被 a a a 整除(记做 a ∤ b a\nmid b a∤b)。
性质
#1 整除的传递性:若 a ∣ b a\mid b a∣b 且 b ∣ c b \mid c b∣c ,则 a ∣ c a \mid c a∣c。
∵ a ∣ b \quad\quad \because a \mid b ∵a∣b
∴ a x = b ( x ∈ Z , x ≠ 0 ) \quad\quad \therefore ax=b\ (x \in \mathbb{Z},x\neq0) ∴ax=b (x∈Z,x=0)
∵ b ∣ c \quad\quad \because b \mid c ∵b∣c
∴ b y = c ( y ∈ Z , y ≠ 0 ) \quad\quad \therefore by=c\ (y\in \mathbb{Z},y\neq0) ∴by=c (y∈Z,y=0)
∴ a x y = c ( x ∈ Z , y ∈ Z , x ≠ 0 , y ≠ 0 ) \quad\quad \therefore axy=c\ (x\in \mathbb{Z},y\in \mathbb{Z},x\neq0,y\neq0) ∴axy=c (x∈Z,y∈Z,x=0,y=0)
∵ x y ∈ Z \quad\quad \because xy \in \mathbb{Z} ∵xy∈Z
∴ a ∣ c \quad\quad \therefore a\mid c ∴a∣c
#2: 若 a ∣ b a\mid b a∣b 且 a ∣ c a\mid c a∣c ,则 ∀ x , y \forall \ x,y ∀ x,y 有 a ∣ ( b x + c y ) a\mid (bx+cy) a∣(bx+cy)。
∵ a ∣ b \quad\quad \because a\mid b ∵a∣b
∴ a s = b ( s ∈ Z , s ≠ 0 ) \quad\quad \therefore as=b\ (s\in \mathbb{Z},s\neq0) ∴as=b (s∈Z,s=0)
∵ a ∣ c \quad\quad \because a \mid c ∵a∣c
∴ a t = c ( t ∈ Z , t ≠ 0 ) \quad\quad \therefore at=c\ (t\in\mathbb{Z},t\neq0) ∴at=c (t∈Z,t=0)
∴ b x + c y = a s x + a t y = a ( s x + t y ) \quad\quad \therefore bx+cy=asx+aty=a(sx+ty) ∴bx+cy=asx+aty=a(sx+ty)
∵ x ∈ Z , y ∈ Z \quad\quad \because x\in\mathbb{Z},y\in\mathbb{Z} ∵x∈Z,y∈Z
∴ s x + t y ∈ Z \quad\quad \therefore sx+ty\in\mathbb{Z} ∴sx+ty∈Z
∴ a ∣ ( b x + c y ) \quad\quad \therefore a\mid (bx+cy) ∴a∣(bx+cy)
#3: ∃ m ≠ 0 \exists \ m\neq 0 ∃ m=0 且 a ∣ b a\mid b a∣b ,则 a m ∣ b m am \mid bm am∣bm。
∵ a ∣ b \quad\quad \because a \mid b ∵a∣b
∴ a x = b ( x ∈ Z , x ≠ 0 ) \quad\quad \therefore ax = b\ (x\in\mathbb{Z},x\neq0) ∴ax=b (x∈Z,x=0)
∴ a x m = b m ( x ∈ Z , x ≠ 0 ) \quad\quad \therefore axm=bm\ (x\in\mathbb{Z},x\neq0) ∴axm=bm (x∈Z,x=0)
∴ a m ∣ b m \quad\quad \therefore am \mid bm ∴am∣bm
#4: 设 x , y ∈ Z x,y\in\mathbb{Z} x,y∈Z 有 a x + b y = 1 ax+by=1 ax+by=1,且 a ∣ n , b ∣ n a\mid n,b\mid n a∣n,b∣n,那么 ( a b ) ∣ n (ab) \mid n (ab)∣n 。
∵ a ∣ n \quad\quad \because a\mid n ∵a∣n
∴ a s = n ( s ∈ Z , s ≠ 0 ) \quad\quad \therefore as=n\ (s\in\mathbb{Z},s\neq0) ∴as=n (s∈Z,s=0)
∵ b ∣ n \quad\quad \because b\mid n ∵b∣n
∴ b t = n ( t ∈ Z , t ≠ 0 ) \quad\quad \therefore bt=n\ (t\in\mathbb{Z},t\neq0) ∴bt=n (t∈Z,t=0)
∴ s t = n 2 a b \quad\quad \therefore st=\dfrac{n^2}{ab} ∴st=abn2
∵ a x + b y = 1 \quad\quad \because ax+by=1 ∵ax+by=1
∴ n s x + n t y = 1 \quad\quad \therefore \dfrac{n}{s}x+\dfrac{n}{t}y=1 ∴snx+tny=1
∴ t x + s y = s t n \quad\quad \therefore tx+sy=\dfrac{st}{n} ∴tx+sy=nst
∴ t x + s y = n a b \quad\quad \therefore tx+sy=\dfrac{n}{ab} ∴tx+sy=abn
∵ x ∈ Z , y ∈ Z \quad\quad \because x\in\mathbb{Z},y\in\mathbb{Z} ∵x∈Z,y∈Z
∴ t x + s y ∈ Z \quad\quad \therefore tx+sy\in\mathbb{Z} ∴tx+sy∈Z
∴ ( a b ) ∣ n \quad\quad \therefore (ab) \mid n ∴(ab)∣n
#5: 若 b = d q + c ( q ∈ Z ) b=dq+c\ (q\in\mathbb{Z}) b=dq+c (q∈Z),那么 d ∣ b d\mid b d∣b 的充要条件为 d ∣ c d\mid c d∣c 。
\quad\quad 设 d ∣ b d\mid b d∣b 成立,则 d x = b ( x ∈ Z , x ≠ 0 ) dx=b\ (x\in\mathbb{Z},x\neq0) dx=b (x∈Z,x=0)
∴ d x = d q + c \quad\quad \therefore dx=dq+c ∴dx=dq+c
∴ c = d ( x − q ) \quad\quad \therefore c=d(x-q) ∴c=d(x−q)
∵ x ∈ Z , q ∈ Z \quad\quad \because x\in\mathbb{Z},q\in\mathbb{Z} ∵x∈Z,q∈Z
∴ x − q ∈ Z \quad\quad \therefore x-q\in\mathbb{Z} ∴x−q∈Z
∴ d ∣ c \quad\quad \therefore d\mid c ∴d∣c
\quad\quad 设 d ∣ c d\mid c d∣c 成立,则 d y = c ( y ∈ Z , y ≠ 0 ) dy=c\ (y\in\mathbb{Z},y\neq0) dy=c (y∈Z,y=0)
∴ b = d q + d y \quad\quad \therefore b=dq+dy ∴b=dq+dy
∴ b = d ( y + q ) \quad\quad \therefore b=d(y+q) ∴b=d(y+q)
∵ y ∈ Z , q ∈ Z \quad\quad \because y\in\mathbb{Z},q\in\mathbb{Z} ∵y∈Z,q∈Z
∴ y + q ∈ Z \quad\quad \therefore y+q\in\mathbb{Z} ∴y+q∈Z
∴ d ∣ b \quad\quad \therefore d\mid b ∴d∣b
>> 模运算
定义
设 a , b ∈ Z a,b\in\mathbb{Z} a,b∈Z,其中 b ≠ 0 b\neq0 b=0,求 a a a 除 b b b 的余数,称为 a a a 模 b b b,记做 a m o d b a\!\!\mod b amodb 。
性质
#1 分配律: ( a op b ) m o d m = ( a m o d m op b m o d m ) m o d m (a \ \text{op} \ b) \!\!\mod m=(a \!\!\mod m \ \text{op} \ b \!\!\mod m) \!\!\mod m (a op b)modm=(amodm op bmodm)modm ,其中 op \text{op} op 为 + , − , × +,-,\times +,−,× 。
\quad\quad (加法)
\quad\quad 令 a = m q 1 + r 1 , b = m q 2 + r 2 a=mq_1+r_1,b=mq_2+r_2 a=mq1+r1,b=mq2+r2 。
∴ ( a + b ) m o d m = ( m q 1 + r 1 + m q 2 + r 2 ) m o d m \quad\quad \therefore (a+b) \!\!\mod m=(mq_1+r_1+mq_2+r_2) \!\!\mod m ∴(a+b)modm=(mq1+r1+mq2+r2)modm
= ( m ( q 1 + q 2 ) + r 1 + r 2 ) m o d m \quad\quad \quad\quad \quad\quad \quad\quad \quad\ \ \ =(m(q_1+q_2)+r_1+r_2) \!\!\mod m =(m(q1+q2)+r1+r2)modm
\quad\quad 设 K = ( q 1 + q 2 ) , N = ( r 1 + r 2 ) K=(q_1+q_2),N=(r_1+r_2) K=(q1+q2),N=(r1+r2),
\quad\quad 则 ( a + b ) m o d m = ( m K + N ) m o d m = N m o d m = ( r 1 + r 2 ) m o d m (a+b)\!\!\mod m=(mK+N) \!\!\mod m=N \!\!\mod m=(r_1+r_2)\!\!\mod m (a+b)modm=(mK+N)modm=Nmodm=(r1+r2)modm
\quad\quad 即 ( a + b ) m o d m = ( a m o d m + b m o d m ) m o d m (a+b)\!\!\mod m=(a\!\!\mod m+b\!\!\mod m) \!\!\mod m (a+b)modm=(amodm+bmodm)modm 。
\quad\quad (减法同加法)
\quad\quad (乘法)
\quad\quad 令 a = m q 1 + r 1 , b = m q 2 + r 2 a=mq_1+r_1,b=mq_2+r_2 a=mq1+r1,b=mq2+r2 。
∴ ( a b ) m o d m = ( ( m q 1 + r 1 ) ( m q 2 + r 2 ) ) m o d m \quad\quad \therefore (ab) \!\!\mod m=((mq_1+r_1)(mq_2+r_2)) \!\!\mod m ∴(ab)modm=((mq1+r1)(mq2+r2))modm
= ( m 2 q 1 q 2 + m q 1 r 2 + m q 2 r 1 + r 1 r 2 ) m o d m \quad\quad \quad\quad \quad\quad \quad\quad \ \ =(m^2q_1q_2+mq_1r_2+mq_2r_1+r_1r_2) \!\!\mod m =(m2q1q2+mq1r2+mq2r1+r1r2)modm
= ( m ( m q 1 q 2 + q 1 r 2 + q 2 r 1 ) + r 1 r 2 ) m o d m \quad\quad \quad\quad \quad\quad \quad\quad \ \ =(m(mq_1q_2+q_1r_2+q_2r_1)+r_1r_2) \!\!\mod m =(m(mq1q2+q1r2+q2r1)+r1r2)modm
\quad\quad 设 K = ( m q 1 q 2 + q 1 r 2 + q 2 r 1 ) , N = r 1 r 2 K=(mq_1q_2+q_1r_2+q_2r_1),N=r_1r_2 K=(mq1q2+q1r2+q2r1),N=r1r2,
\quad\quad 则 ( a b ) m o d m = ( m K + N ) m o d m = N m o d m = ( r 1 r 2 ) m o d m (ab) \!\!\mod m = (mK+N) \!\!\mod m = N \!\!\mod m = (r_1r_2) \!\!\mod m (ab)modm=(mK+N)modm=Nmodm=(r1r2)modm
\quad\quad 即 ( a b ) m o d m = ( a m o d m + b m o d m ) m o d m (ab) \!\!\mod m = (a \!\!\mod m+b\!\!\mod m) \!\!\mod m (ab)modm=(amodm+bmodm)modm 。
#1*: a b m o d m = ( a m o d m ) b m o d m a^b\!\!\mod m=(a\!\!\mod m)^b\!\!\mod m abmodm=(amodm)bmodm 。
\quad\quad (证明同乘法)
#2 放缩性:若 a m o d b = c a \!\!\mod b = c amodb=c , d ≠ 0 d\neq0 d=0 且 d ∈ Z d\in\mathbb{Z} d∈Z,则 ( a d ) m o d ( b d ) = c d (ad) \!\!\mod (bd)=cd (ad)mod(bd)=cd 。
\quad\quad 令 b q + c = a bq+c=a bq+c=a 。
∴ b d q + c d = a d \quad\quad \therefore bdq+cd=ad ∴bdq+cd=ad
∴ ( a d ) m o d ( b d ) = c d \quad\quad \therefore (ad) \!\! \mod (bd)=cd ∴(ad)mod(bd)=cd
#3: 若 2 2 2 能整除数 a a a 的最后一位,则 2 ∣ a 2\mid a 2∣a 。
\quad\quad 设 a = x 1 x 2 x 3 ⋯ x n − 1 x n ‾ a=\overline{x_1x_2x_3\cdots x_{n-1}x_n} a=x1x2x3⋯xn−1xn,
∴ a = x 1 x 2 x 3 ⋯ x n − 1 ‾ × 10 + x n \quad\quad \therefore a = \overline{x_1x_2x_3\cdots x_{n-1}}\times 10+x_n ∴a=x1x2x3⋯xn−1×10+xn
∵ 2 ∣ x n , 2 ∣ 10 \quad\quad \because 2 \mid x_n,2\mid 10 ∵2∣xn,2∣10
∴ 2 ∣ a \quad\quad \therefore 2 \mid a ∴2∣a
#3*: 若 4 4 4 能整除数 a a a 的最后两位,则 4 ∣ a 4 \mid a 4∣a 。
\quad\quad 设 a = x 1 x 2 x 3 ⋯ x n − 2 x n − 1 x n ‾ a=\overline{x_1x_2x_3\cdots x_{n-2}x_{n-1}x_n} a=x1x2x3⋯xn−2xn−1xn,
∴ a = x 1 x 2 x 3 ⋯ x n − 2 ‾ × 100 + x n − 1 x n ‾ \quad\quad \therefore a = \overline{x_1x_2x_3\cdots x_{n-2}}\times 100+\overline{x_{n-1}x_n} ∴a=x1x2x3⋯xn−2×100+xn−1xn
∵ 4 ∣ x n − 1 x n ‾ , 4 ∣ 100 \quad\quad \because 4 \mid \overline{x_{n-1}x_n},4\mid 100 ∵4∣xn−1xn,4∣100
∴ 4 ∣ a \quad\quad \therefore 4 \mid a ∴4∣a
#4: 若 3 3 3 能整除数 a a a 的各位数字之和,则 3 ∣ a 3 \mid a 3∣a 。
\quad\quad 设 a = x 1 x 2 x 3 ⋯ x n − 1 x n ‾ a=\overline{x_1x_2x_3\cdots x_{n-1}x_n} a=x1x2x3⋯xn−1xn,
∴ 3 ∣ ∑ i = 1 n x i \quad\quad \therefore 3\mid \sum_{i=1}^{n}x_i ∴3∣∑i=1nxi
∴ ( ∑ i = 1 n x i ) m o d 3 = 0 \quad\quad \therefore \left(\sum_{i=1}^{n}x_i\right) \!\!\mod 3 = 0 ∴(∑i=1nxi)mod3=0
∵ a = 1 0 n − 1 x 1 + 1 0 n − 2 x 2 + ⋯ + 10 x n − 1 + x n \quad\quad \because a=10^{n-1}x_1+10^{n-2}x_2+\cdots+10x_{n-1}+x_n ∵a=10n−1x1+10n−2x2+⋯+10xn−1+xn
∴ a m o d 3 = ( 1 0 n − 1 x 1 + 1 0 n − 2 x 2 + ⋯ + 10 x n − 1 + x n ) m o d 3 \quad\quad \therefore a \!\!\mod 3=(10^{n-1}x_1+10^{n-2}x_2+\cdots+10x_{n-1}+x_n) \!\!\mod 3 ∴amod3=(10n−1x1+10n−2x2+⋯+10xn−1+xn)mod3
= ( 1 0 n − 1 x 1 m o d 3 + 1 0 n − 2 x 2 m o d 3 + ⋯ + 10 x n − 1 m o d 3 + x n m o d 3 ) m o d 3 \quad\quad \quad\quad \quad\quad \ \ \ \ =(10^{n-1}x_1 \!\!\mod 3+10^{n-2}x_2 \!\!\mod 3+\cdots+10x_{n-1} \!\!\mod 3+x_n \!\!\mod 3) \!\!\mod 3 =(10n−1x1mod3+10n−2x2mod3+⋯+10xn−1mod3+xnmod3)mod3
= ( ( 1 0 n − 1 − 1 + 1 ) x 1 m o d 3 + ( 1 0 n − 2 − 1 + 1 ) x 2 m o d 3 + ⋯ + ( 9 + 1 ) x n − 1 m o d 3 + x n m o d 3 ) m o d 3 \quad\quad \quad\quad \quad\quad \ \ \ \ =((10^{n-1}-1+1)x_1\!\!\mod 3+(10^{n-2}-1+1)x_2\!\!\mod 3+\cdots+(9+1)x_{n-1}\!\!\mod 3+x_n\!\!\mod 3)\!\!\mod 3 =((10n−1−1+1)x1mod3+(10n−2−1+1)x2mod3+⋯+(9+1)xn−1mod3+xnmod3)mod3
= ( x 1 + x 2 + x 3 + ⋯ + x n − 1 + x n ) m o d 3 \quad\quad \quad\quad \quad\quad \quad=(x_1+x_2+x_3+\cdots+x_{n-1}+x_{n}) \!\!\mod 3 =(x1+x2+x3+⋯+xn−1+xn)mod3
= ( ∑ i = 1 n x i ) m o d 3 \quad\quad \quad\quad \quad\quad \quad=\left(\sum_{i=1}^nx_i\right) \!\!\mod 3 =(∑i=1nxi)mod3
= 0 \quad\quad \quad\quad \quad\quad \quad =0 =0
∴ 3 ∣ a \quad\quad \therefore 3 \mid a ∴3∣a
#4*: 若 9 9 9 能整除数 a a a 的各位数字之和,则 9 ∣ a 9 \mid a 9∣a 。
\quad\quad 设 a = x 1 x 2 x 3 ⋯ x n − 1 x n ‾ a=\overline{x_1x_2x_3\cdots x_{n-1}x_n} a=x1x2x3⋯xn−1xn,
∴ 9 ∣ ∑ i = 1 n x i \quad\quad \therefore 9\mid \sum_{i=1}^{n}x_i ∴9∣∑i=1nxi
∴ ( ∑ i = 1 n x i ) m o d 9 = 0 \quad\quad \therefore \left(\sum_{i=1}^{n}x_i\right) \!\!\mod 9 = 0 ∴(∑i=1nxi)mod9=0
∵ a = 1 0 n − 1 x 1 + 1 0 n − 2 x 2 + ⋯ + 10 x n − 1 + x n \quad\quad \because a=10^{n-1}x_1+10^{n-2}x_2+\cdots+10x_{n-1}+x_n ∵a=10n−1x1+10n−2x2+⋯+10xn−1+xn
∴ a m o d 9 = ( 1 0 n − 1 x 1 + 1 0 n − 2 x 2 + ⋯ + 10 x n − 1 + x n ) m o d 9 \quad\quad \therefore a \!\!\mod 9=(10^{n-1}x_1+10^{n-2}x_2+\cdots+10x_{n-1}+x_n) \!\!\mod 9 ∴amod9=(10n−1x1+10n−2x2+⋯+10xn−1+xn)mod9
= ( 1 0 n − 1 x 1 m o d 9 + 1 0 n − 2 x 2 m o d 9 + ⋯ + 10 x n − 1 m o d 9 + x n m o d 9 ) m o d 9 \quad\quad \quad\quad \quad\quad \quad=(10^{n-1}x_1 \!\!\mod 9+10^{n-2}x_2 \!\!\mod 9+\cdots+10x_{n-1} \!\!\mod 9+x_n \!\!\mod 9) \!\!\mod 9 =(10n−1x1mod9+10n−2x2mod9+⋯+10xn−1mod9+xnmod9)mod9
= ( ( 1 0 n − 1 − 1 + 1 ) x 1 m o d 9 + ( 1 0 n − 2 − 1 + 1 ) x 2 m o d 9 + ⋯ + ( 9 + 1 ) x n − 1 m o d 9 + x n m o d 9 ) m o d 9 \quad\quad \quad\quad \quad\quad \quad=((10^{n-1}-1+1)x_1\!\!\mod 9+(10^{n-2}-1+1)x_2\!\!\mod 9+\cdots+(9+1)x_{n-1}\!\!\mod 9+x_n\!\!\mod 9)\!\!\mod 9 =((10n−1−1+1)x1mod9+(10n−2−1+1)x2mod9+⋯+(9+1)xn−1mod9+xnmod9)mod9
= ( x 1 + x 2 + x 3 + ⋯ + x n − 1 + x n ) m o d 9 \quad\quad \quad\quad \quad\quad \quad=(x_1+x_2+x_3+\cdots+x_{n-1}+x_{n}) \!\!\mod 9 =(x1+x2+x3+⋯+xn−1+xn)mod9
= ( ∑ i = 1 n x i ) m o d 9 \quad\quad \quad\quad \quad\quad \quad=\left(\sum_{i=1}^nx_i\right) \!\!\mod 9 =(∑i=1nxi)mod9
= 0 \quad\quad \quad\quad \quad\quad \quad=0 =0
∴ 9 ∣ a \quad\quad \therefore 9\mid a ∴9∣a
#5: 若 11 11 11 能整除数 a a a 偶数位上各位数字之和与奇数位上各位数字之差,则 11 ∣ a 11\mid a 11∣a 。
\quad\quad 设 a = x 1 x 2 x 3 ⋯ x n − 1 x n ‾ a=\overline{x_1x_2x_3\cdots x_{n-1}x_n} a=x1x2x3⋯xn−1xn,
\quad\quad 当 n m o d 2 = 0 n \!\!\mod 2=0 nmod2=0 时, ( ( x 1 + x 3 + x 5 + ⋯ + x n − 1 ) − ( x 2 + x 4 + x 6 + ⋯ + x n ) ) m o d 11 = 0 ((x_1+x_3+x_5+\cdots+x_{n-1})-(x_2+x_4+x_6+\cdots+x_n))\!\!\mod 11=0 ((x1+x3+x5+⋯+xn−1)−(x2+x4+x6+⋯+xn))mod11=0
\quad\quad 当 n m o d 2 = 1 n \!\!\mod 2=1 nmod2=1 时, ( ( x 2 + x 4 + x 6 + ⋯ + x n ) − ( x 1 + x 3 + x 5 + ⋯ + x n − 1 ) ) m o d 11 = 0 ((x_2+x_4+x_6+\cdots+x_n)-(x_1+x_3+x_5+\cdots+x_{n-1})) \!\!\mod11=0 ((x2+x4+x6+⋯+xn)−(x1+x3+x5+⋯+xn−1))mod11=0
∵ x m o d k = ( − x ) m o d k \quad\quad\because x\!\!\mod k=(-x) \!\!\mod k ∵xmodk=(−x)modk
∴ \quad\quad\therefore ∴ 上述两种情况等价(以情况一为例)
∵ a = 1 0 n − 1 x 1 + 1 0 n − 2 x 2 + ⋯ + 10 x n − 1 + x n \quad\quad\because a=10^{n-1}x_1+10^{n-2}x_2+\cdots+10x_{n-1}+x_n ∵a=10n−1x1+10n−2x2+⋯+10xn−1+xn
∴ a m o d 11 = ( 1 0 n − 1 x 1 + 1 0 n − 2 x 2 + ⋯ + 10 x n − 1 + x n ) m o d 11 \quad\quad\therefore a \!\!\mod 11=(10^{n-1}x_1+10^{n-2}x_2+\cdots+10x_{n-1}+x_n) \!\!\mod 11 ∴amod11=(10n−1x1+10n−2x2+⋯+10xn−1+xn)mod11
= ( 1 0 n − 1 x 1 m o d 11 + 1 0 n − 2 x 2 m o d 11 + ⋯ + 10 x n − 1 m o d 11 + x n m o d 11 ) m o d 11 \quad\quad\quad\quad\quad\quad\quad\ \ =(10^{n-1}x_1 \!\!\mod 11+10^{n-2}x_2 \!\!\mod 11+\cdots+10x_{n-1} \!\!\mod 11+x_n \!\!\mod 11) \!\!\mod 11 =(10n−1x1mod11+10n−2x2mod11+⋯+10xn−1mod11+xnmod11)mod11
= ( ( 1 0 n − 1 − 1 + 1 ) x 1 m o d 9 + ( 1 0 n − 2 + 1 − 1 ) x 2 m o d 9 + ⋯ + ( 9 + 1 ) x n − 1 m o d 9 + x n m o d 9 ) m o d 9 \quad\quad\quad\quad\quad\quad\quad\ \ =((10^{n-1}-1+1)x_1\!\!\mod 9+(10^{n-2}+1-1)x_2\!\!\mod 9+\cdots+(9+1)x_{n-1}\!\!\mod 9+x_n\!\!\mod 9)\!\!\mod 9 =((10n−1−1+1)x1mod9+(10n−2+1−1)x2mod9+⋯+(9+1)xn−1mod9+xnmod9)mod9
= ( ( x 1 + x 3 + x 5 + ⋯ + x n − 1 ) − ( x 2 + x 4 + x 6 + ⋯ + x n ) ) m o d 11 \quad\quad\quad\quad\quad\quad\quad\ \ =((x_1+x_3+x_5+\cdots+x_{n-1})-(x_2+x_4+x_6+\cdots+x_n))\!\!\mod 11 =((x1+x3+x5+⋯+xn−1)−(x2+x4+x6+⋯+xn))mod11
= 0 \quad\quad\quad\quad\quad\quad\quad\ \ =0 =0
∴ 11 ∣ a \quad\quad\therefore 11\mid a ∴11∣a
#6: 若 7 , 11 , 13 7,11,13 7,11,13 能整除数 a a a 末三位与末三位之前的数字所组成的数的差,则 7 ∣ a , 11 ∣ a , 13 ∣ a 7\mid a,11\mid a,13\mid a 7∣a,11∣a,13∣a 。
\quad\quad 设 a = x 1 x 2 x 3 ⋯ x n − 1 x n ‾ a=\overline{x_1x_2x_3\cdots x_{n-1}x_n} a=x1x2x3⋯xn−1xn,
∵ lcm ( 7 , 11 , 13 ) = 1001 \quad\quad\because \text{lcm}(7,11,13)=1001 ∵lcm(7,11,13)=1001
∴ 7 ∣ a , 11 ∣ a , 13 ∣ a \quad\quad\therefore 7\mid a,11\mid a,13\mid a ∴7∣a,11∣a,13∣a 是 1001 ∣ a 1001\mid a 1001∣a 的充要条件。
∴ ( x n − 2 x n − 1 x n ‾ − x 1 x 2 x 3 ⋯ x n − 3 ‾ ) m o d 1001 = 0 \quad\quad\therefore (\overline{x_{n-2}x_{n-1}x_n}-\overline{x_1x_2x_3\cdots x_{n-3}}) \!\!\mod 1001=0 ∴(xn−2xn−1xn−x1x2x3⋯xn−3)mod1001=0
∵ a = 1 0 n − 1 x 1 + 1 0 n − 2 x 2 + ⋯ + 10 x n − 1 + x n \quad\quad\because a=10^{n-1}x_1+10^{n-2}x_2+\cdots+10x_{n-1}+x_n ∵a=10n−1x1+10n−2x2+⋯+10xn−1+xn
∴ a m o d 1001 = ( x 1 x 2 x 3 ⋯ x n − 3 ‾ × 1000 + x n − 2 x n − 1 x n ‾ ) m o d 1001 \quad\quad\therefore a\!\!\mod 1001=(\overline{x_1x_2x_3\cdots x_{n-3}}\times1000+\overline{x_{n-2}x_{n-1}x_n}) \!\!\mod 1001 ∴amod1001=(x1x2x3⋯xn−3×1000+xn−2xn−1xn)mod1001
= ( x 1 x 2 x 3 ⋯ x n − 3 ‾ × 1000 m o d 1001 + x n − 2 x n − 1 x n ‾ m o d 1001 ) m o d 1001 \quad\quad\quad\quad\quad\quad\quad\quad\ \ = (\overline{x_1x_2x_3\cdots x_{n-3}}\times1000 \!\!\mod 1001+\overline{x_{n-2}x_{n-1}x_n}\!\!\mod 1001) \!\!\mod 1001 =(x1x2x3⋯xn−3×1000mod1001+xn−2xn−1xnmod1001)mod1001
= ( x 1 x 2 x 3 ⋯ x n − 3 ‾ × ( 1001 − 1 ) m o d 1001 + x n − 2 x n − 1 x n ‾ ) m o d 1001 \quad\quad\quad\quad\quad\quad\quad\quad\ \ = (\overline{x_1x_2x_3\cdots x_{n-3}}\times(1001-1) \!\!\mod 1001+\overline{x_{n-2}x_{n-1}x_n}) \!\!\mod 1001 =(x1x2x3⋯xn−3×(1001−1)mod1001+xn−2xn−1xn)mod1001
= ( x n − 2 x n − 1 x n ‾ − x 1 x 2 x 3 ⋯ x n − 3 ‾ ) m o d 1001 \quad\quad\quad\quad\quad\quad\quad\quad\ \ =(\overline{x_{n-2}x_{n-1}x_n}-\overline{x_1x_2x_3\cdots x_{n-3}}) \!\!\mod 1001 =(xn−2xn−1xn−x1x2x3⋯xn−3)mod1001
= 0 \quad\quad\quad\quad\quad\quad\quad\quad\ \ =0 =0
∴ 1001 ∣ a \quad\quad\therefore 1001\mid a ∴1001∣a
∴ 7 ∣ a , 11 ∣ a , 13 ∣ a \quad\quad\therefore 7\mid a,11\mid a,13\mid a ∴7∣a,11∣a,13∣a
>> 同余
定义
设 m ∈ Z + m\in\mathbb{Z}^+ m∈Z+,若 m ∣ ( a − b ) m \mid (a-b) m∣(a−b),则称 a a a 与 b b b 对模 m m m 同余,记做 a ≡ b ( m o d m ) a\equiv b\pmod m a≡b(modm),否则 a a a 与 b b b 对模 m m m 一定不同余。
性质
#1 自反性: a ≡ a ( m o d m ) a\equiv a\pmod m a≡a(modm) 。
∵ m ∣ 0 \quad\quad\because m\mid 0 ∵m∣0
∴ m ∣ ( a − a ) \quad\quad\therefore m\mid(a-a) ∴m∣(a−a)
∴ a ≡ a ( m o d m ) \quad\quad\therefore a\equiv a\pmod m ∴a≡a(modm)
#2 对称性:若 a ≡ b ( m o d m ) a\equiv b\pmod m a≡b(modm),则 b ≡ a ( m o d m ) b \equiv a\pmod m b≡a(modm) 。
∵ a ≡ b ( m o d m ) \quad\quad\because a\equiv b\pmod m ∵a≡b(modm)
∴ m ∣ ( a − b ) \quad\quad\therefore m\mid(a-b) ∴m∣(a−b)
∵ m ∣ x = m ∣ ( − x ) \quad\quad\because m\mid x=m\mid(-x) ∵m∣x=m∣(−x)
∴ m ∣ ( b − a ) \quad\quad\therefore m\mid(b-a) ∴m∣(b−a)
∴ b ≡ a ( m o d m ) \quad\quad\therefore b\equiv a\pmod m ∴b≡a(modm)
#3 传递性:若 a ≡ b ( m o d m ) a\equiv b\pmod m a≡b(modm) 且 b ≡ c ( m o d m ) b\equiv c\pmod m b≡c(modm),则 a ≡ c ( m o d m ) a\equiv c\pmod m a≡c(modm) 。
∵ a ≡ b ( m o d m ) \quad\quad\because a\equiv b\pmod m ∵a≡b(modm)
∴ m ∣ ( a − b ) \quad\quad\therefore m \mid (a-b) ∴m∣(a−b)
∵ b ≡ c ( m o d m ) \quad\quad\because b\equiv c\pmod m ∵b≡c(modm)
∴ m ∣ ( b − c ) \quad\quad\therefore m\mid(b-c) ∴m∣(b−c)
∴ m ∣ ( a − b ) + ( b − c ) \quad\quad\therefore m\mid(a-b)+(b-c) ∴m∣(a−b)+(b−c)
∴ m ∣ ( a − c ) \quad\quad\therefore m\mid (a-c) ∴m∣(a−c)
∴ a ≡ c ( m o d m ) \quad\quad\therefore a\equiv c\pmod m ∴a≡c(modm)
#4 同加 / 减 / 乘性:若 a ≡ b ( m o d m ) a\equiv b\pmod m a≡b(modm), c ∈ Z c\in\mathbb{Z} c∈Z,则 ( a op c ) ≡ ( b op c ) ( m o d m ) (a\ \text{op}\ c)\equiv(b\ \text{op}\ c)\pmod m (a op c)≡(b op c)(modm) ,其中 op \text{op} op 为 + , − , × +,-,\times +,−,×。
\quad\quad (以加法为例)
∵ a ≡ b ( m o d m ) \quad\quad\because a\equiv b\pmod m ∵a≡b(modm)
∴ m ∣ ( a − b ) \quad\quad\therefore m \mid(a-b) ∴m∣(a−b)
∴ m ∣ ( a − b ) + c − c \quad\quad\therefore m \mid (a-b)+c-c ∴m∣(a−b)+c−c
∴ m ∣ ( ( a + c ) − ( b + c ) ) \quad\quad\therefore m \mid ((a+c)-(b+c)) ∴m∣((a+c)−(b+c))
∴ ( a + c ) ≡ ( b + c ) ( m o d m ) \quad\quad\therefore (a+c)\equiv(b+c)\pmod m ∴(a+c)≡(b+c)(modm)
#5 同除性:若 a ≡ b ( m o d m ) a\equiv b\pmod m a≡b(modm) , c ∣ a c\mid a c∣a, c ∣ b c\mid b c∣b 且 gcd ( c , m ) = 1 \gcd(c,m)=1 gcd(c,m)=1,则 a c ≡ b c ( m o d m ) \dfrac{a}{c}\equiv\dfrac{b}{c}\pmod m ca≡cb(modm) 。
∵ a ≡ b ( m o d m ) \quad\quad\because a\equiv b\pmod m ∵a≡b(modm)
∴ m ∣ ( a − b ) \quad\quad\therefore m\mid(a-b) ∴m∣(a−b)
\quad\quad 令 m k = a − b mk=a-b mk=a−b
\quad\quad 则 m k + b = a mk+b=a mk+b=a
∴ m c k + b c = a c \quad\quad\therefore \dfrac{m}{c}k+\dfrac{b}{c}=\dfrac{a}{c} ∴cmk+cb=ca
∵ c ∣ a , c ∣ b , gcd ( c , m ) = 1 \quad\quad\because c\mid a,c\mid b,\gcd(c, m)=1 ∵c∣a,c∣b,gcd(c,m)=1
∴ a c ∈ Z , b c ∈ Z , m c ∉ Z , m c ∈ R \quad\quad\therefore \dfrac{a}{c}\in\mathbb{Z},\dfrac{b}{c}\in\mathbb{Z},\dfrac{m}{c}\notin\mathbb{Z},\dfrac{m}{c}\in\mathbb{R} ∴ca∈Z,cb∈Z,cm∈/Z,cm∈R
∴ m c k ∈ Z \quad\quad\therefore \dfrac{m}{c}k\in\mathbb{Z} ∴cmk∈Z
∴ c ∣ k \quad\quad\therefore c\mid k ∴c∣k
\quad\quad 令 c x = k cx = k cx=k,
∴ m c x + b = a \quad\quad\therefore mcx+b=a ∴mcx+b=a
∴ m x + b c = a c \quad\quad\therefore mx+\dfrac{b}{c}=\dfrac{a}{c} ∴mx+cb=ca
∴ a c ≡ b c ( m o d m ) \quad\quad\therefore \dfrac{a}{c}\equiv\dfrac{b}{c}\pmod m ∴ca≡cb(modm)
#6 同幂性:若 a ≡ b ( m o d m ) a\equiv b\pmod m a≡b(modm), c ∈ Z + c\in\mathbb{Z}^+ c∈Z+,则 a c ≡ b c ( m o d m ) a^c\equiv b^c\pmod m ac≡bc(modm) 。
∵ a ≡ b ( m o d m ) \quad\quad\because a\equiv b\pmod m ∵a≡b(modm)
∴ a m o d m = b m o d m \quad\quad\therefore a\!\!\mod m=b\!\!\mod m ∴amodm=bmodm
∴ ( a m o d m ) c m o d m = ( b m o d m ) c m o d m \quad\quad\therefore (a\!\!\mod m)^c\!\!\mod m=(b\!\!\mod m)^c\!\!\mod m ∴(amodm)cmodm=(bmodm)cmodm
∴ a c m o d m = b c m o d m \quad\quad\therefore a^c\!\!\mod m=b^c\!\!\mod m ∴acmodm=bcmodm
∴ a c ≡ b c ( m o d m ) \quad\quad\therefore a^c \equiv b^c\pmod m ∴ac≡bc(modm)
#7:若 a ≡ b ( m o d m ) a\equiv b\pmod m a≡b(modm), c ≡ d ( m o d m ) c\equiv d\pmod m c≡d(modm),则 ( a + c ) ≡ ( b + d ) ( m o d m ) (a+c)\equiv(b+d)\pmod m (a+c)≡(b+d)(modm) 。
∵ a ≡ b ( m o d m ) \quad\quad\because a\equiv b\pmod m ∵a≡b(modm)
∴ m ∣ ( a − b ) \quad\quad\therefore m \mid (a-b) ∴m∣(a−b)
∵ c ≡ d ( m o d m ) \quad\quad\because c\equiv d\pmod m ∵c≡d(modm)
∴ m ∣ ( c − d ) \quad\quad\therefore m\mid(c-d) ∴m∣(c−d)
∴ m ∣ ( ( a − b ) + ( c − d ) ) \quad\quad\therefore m\mid((a-b)+(c-d)) ∴m∣((a−b)+(c−d))
∴ m ∣ ( ( a + c ) − ( b + d ) ) \quad\quad\therefore m\mid((a+c)-(b+d)) ∴m∣((a+c)−(b+d))
∴ ( a + c ) ≡ ( b + d ) ( m o d m ) \quad\quad\therefore (a+c)\equiv(b+d)\pmod m ∴(a+c)≡(b+d)(modm)
#8:若 a m o d p = x a \!\!\mod p=x amodp=x 且 a m o d q = x a \!\!\mod q=x amodq=x, gcd ( p , q ) = 1 \gcd(p,q)=1 gcd(p,q)=1,则 a m o d ( p q ) = x a\!\!\mod(pq)=x amod(pq)=x 。
∵ a m o d p = x , a m o d q = x \quad\quad\because a\!\!\mod p = x,a \!\!\mod q=x ∵amodp=x,amodq=x
∴ a − x = p k 1 , a − x = q k 2 \quad\quad\therefore a-x=pk_1,a-x=qk_2 ∴a−x=pk1,a−x=qk2
∴ a − x \quad\quad\therefore a-x ∴a−x 为 p , q p,q p,q 公倍数
∵ gcd ( p , q ) = 1 \quad\quad\because \gcd(p,q)=1 ∵gcd(p,q)=1
∴ lcm ( p , q ) = p q \quad\quad\therefore \text{lcm}(p,q)=pq ∴lcm(p,q)=pq
∴ p q ∣ ( a − x ) \quad\quad\therefore pq \mid (a-x) ∴pq∣(a−x)
∴ p q k 3 + x = a \quad\quad\therefore pqk_3+x=a ∴pqk3+x=a
∴ a m o d ( p q ) = x \quad\quad\therefore a\!\!\mod (pq)=x ∴amod(pq)=x
>> 习题
#Task I
\quad\quad 设奇数 x = 2 k + 1 ( k ∈ Z ) x=2k+1\ (k\in\mathbb{Z}) x=2k+1 (k∈Z),
\quad\quad 则 ( 2 k + 1 ) 2 − 1 = 4 k 2 + 4 k + 1 − 1 (2k+1)^2-1=4k^2+4k+1-1 (2k+1)2−1=4k2+4k+1−1
= 4 k ( k + 1 ) \quad\quad\quad\quad\quad\quad\quad\quad\quad=4k(k+1) =4k(k+1)
\quad\quad 当 k m o d 2 = 1 k \!\!\mod 2=1 kmod2=1 时,原式 = 8 × k 2 ( k + 1 ) =8\times\dfrac{k}{2}(k+1) =8×2k(k+1),则 8 ∣ 8 × k 2 ( k + 1 ) 8 \mid 8\times\dfrac{k}{2}(k+1) 8∣8×2k(k+1),
\quad\quad 当 k m o d 2 = 0 k \!\!\mod 2 = 0 kmod2=0 时,原式 = 8 k × k + 1 2 =8k\times \dfrac{k+1}{2} =8k×2k+1 ,则 8 ∣ 8 k × k + 1 2 8 \mid 8k\times \dfrac{k+1}{2} 8∣8k×2k+1 。
\quad\quad 综上,任意奇数的平方为 8 8 8 的倍数。
#Task 2
\quad\quad 当 n m o d 2 = 0 n \!\!\mod 2=0 nmod2=0 时,
3 n + 1 = 3 n − 1 + 2 \quad\quad\quad\quad3^n+1=3^n-1+2 3n+1=3n−1+2
= 2 ( 3 n − 1 + 3 n − 2 + ⋯ + 3 + 1 ) + 2 \quad\quad\quad\quad\quad\quad\quad=2(3^{n-1}+3^{n-2}+\cdots+3+1)+2 =2(3n−1+3n−2+⋯+3+1)+2
= 2 ( 3 n − 1 + 3 n − 2 + ⋯ + 3 + 1 + 1 ) \quad\quad\quad\quad\quad\quad\quad=2(3^{n-1}+3^{n-2}+\cdots+3+1+1) =2(3n−1+3n−2+⋯+3+1+1)
∴ 2 ∣ 3 n + 1 \quad\quad\quad\quad\therefore 2 \mid 3^n + 1 ∴2∣3n+1
\quad\quad 当 n m o d 2 = 1 n \!\!\mod 2=1 nmod2=1 时,
3 n + 1 = 4 ( 3 n − 1 − 3 n − 2 + ⋯ + 1 ) \quad\quad\quad\quad3^n+1=4(3^{n-1}-3^{n-2}+\cdots+1) 3n+1=4(3n−1−3n−2+⋯+1)
∴ 4 ∣ 3 n + 1 \quad\quad\therefore 4 \mid 3^n + 1 ∴4∣3n+1
\quad\quad 一般地,
\quad\quad\quad\quad 由数学归纳法可得 3 k m o d 8 3^k\!\!\mod 8 3kmod8 的末尾为 1 , 3 , 1 , 3 1,3,1,3 1,3,1,3 的数列,进而 3 k + 1 m o d 8 3^k+1\!\!\mod 8 3k+1mod8 的末尾为 2 , 4 , 2 , 4 2,4,2,4 2,4,2,4 的数列,不可能被 8 8 8 整除。
∵ α > 2 \quad\quad\because \alpha>2 ∵α>2
∴ 2 α ⩾ 8 \quad\quad\therefore 2^\alpha\geqslant8 ∴2α⩾8
∴ 2 α ∤ 3 n + 1 \quad\quad\therefore 2^\alpha \nmid 3^n+1 ∴2α∤3n+1
#Task 3
\quad\quad 当 r ⩾ ∣ b ∣ 2 r\geqslant\dfrac{|b|}{2} r⩾2∣b∣ 时, a = q b + r = ( q + 1 ) b − ( b − r ) = ( q + 1 ) b + ( r − b ) a=qb+r=(q+1)b-(b-r)=(q+1)b+(r-b) a=qb+r=(q+1)b−(b−r)=(q+1)b+(r−b)
∴ − ∣ b ∣ 2 ⩽ r < ∣ b ∣ 2 \quad\quad\therefore -\dfrac{|b|}{2}\leqslant r<\dfrac{|b|}{2} ∴−2∣b∣⩽r<2∣b∣
#Task 4
\quad\quad 假设 17 ∣ 2 a + 3 b 17 \mid 2a+3b 17∣2a+3b 成立,
2 a + 3 b ≡ 0 ( m o d 17 ) \quad\quad2a+3b\equiv0\pmod {17} 2a+3b≡0(mod17)
13 ( 2 a + 3 b ) ≡ 0 ( m o d 17 ) \quad\quad13(2a+3b)\equiv0\pmod {17} 13(2a+3b)≡0(mod17)
9 a + 5 b ≡ 0 ( m o d 17 ) \quad\quad9a+5b\equiv 0\pmod {17} 9a+5b≡0(mod17)
\quad\quad 得证。
\quad\quad 假设 17 ∣ 9 a + 5 b 17 \mid 9a+5b 17∣9a+5b 成立,
9 a + 5 b ≡ 0 ( m o d 17 ) \quad\quad9a+5b\equiv0\pmod {17} 9a+5b≡0(mod17)
4 ( 9 a + 5 b ) ≡ 0 ( m o d 17 ) \quad\quad4(9a+5b)\equiv 0\pmod {17} 4(9a+5b)≡0(mod17)
2 a + 3 b ≡ 0 ( m o d 17 ) \quad\quad2a + 3b\equiv0\pmod {17} 2a+3b≡0(mod17)
\quad\quad 得证。
#Task 5
\quad\quad 当 k m o d 2 = 0 k \!\!\mod 2=0 kmod2=0 时,
∵ d 1 d k = n , d 2 d k − 1 = n , ⋯ \quad\quad\quad\quad\because d_1d_k=n,d_2d_{k-1}=n,\cdots ∵d1dk=n,d2dk−1=n,⋯
∴ d 1 d 2 d 3 ⋯ d k = n k 2 \quad\quad\quad\quad\therefore d_1d_2d_3\cdots d_k=n^{\frac{k}{2}} ∴d1d2d3⋯dk=n2k
∴ ( d 1 d 2 d 3 ⋯ d k ) 2 = n k \quad\quad\quad\quad\therefore (d_1d_2d_3\cdots d_k)^2=n^k ∴(d1d2d3⋯dk)2=nk
\quad\quad 当 k m o d 2 = 1 k \!\!\mod 2=1 kmod2=1 时,
∵ d 1 d k = n , d 2 d k − 1 = n , ⋯ \quad\quad\quad\quad\because d_1d_k=n,d_2d_{k-1}=n,\cdots ∵d1dk=n,d2dk−1=n,⋯
∴ d 1 d 2 d 3 ⋯ d k = n k − 1 2 × d k + 1 2 \quad\quad\quad\quad\therefore d_1d_2d_3\cdots d_k=n^{\frac{k-1}{2}}\times d_{\frac{k+1}{2}} ∴d1d2d3⋯dk=n2k−1×d2k+1
∴ ( d 1 d 2 d 2 ⋯ d k ) 2 = n k − 1 × n = n k \quad\quad\quad\quad\therefore (d_1d_2d_2\cdots d_k)^2=n^{k-1}\times n=n^k ∴(d1d2d2⋯dk)2=nk−1×n=nk
#Task 6
\quad\quad 手算。
\quad\quad (1) 2 2 2 (2) 17 17 17 (3) 6 6 6 (4) 23962230 23962230 23962230
#Task 7
∵ gcd ( 1485 , 1745 ) = 5 \quad\quad\because \gcd(1485,1745)=5 ∵gcd(1485,1745)=5
∴ 1485 s + 1745 t = 5 \quad\quad\therefore 1485s+1745t=5 ∴1485s+1745t=5
\quad\quad 解得 s = − 47 + 439 k , t = 40 − 297 k s=-47+439k,t=40-297k s=−47+439k,t=40−297k
#Task 8
\quad\quad 设 gcd ( a m − 1 , a n − 1 ) = a s − 1 \gcd(a^m-1,a^n-1)=a^s-1 gcd(am−1,an−1)=as−1
\quad\quad 则 a s − 1 ∣ ( a m − 1 ) , a s − 1 ∣ ( a n − 1 ) a^s-1\mid (a^m-1),a^s-1\mid (a^n-1) as−1∣(am−1),as−1∣(an−1)
∴ s ∣ m , s ∣ n \quad\quad\therefore s \mid m,s\mid n ∴s∣m,s∣n
∴ s m a x = gcd ( m , n ) \quad\quad\therefore s_{max} = \gcd(m, n) ∴smax=gcd(m,n)
\quad\quad 即 gcd ( a m − 1 , a n − 1 ) = a gcd ( n , m ) − 1 \gcd(a^m-1,a^n-1)=a^{\gcd(n,m)} - 1 gcd(am−1,an−1)=agcd(n,m)−1
#Task 9
\qquad 设 x = gcd ( a , b ) x=\gcd(a,b) x=gcd(a,b),则 a = x k 1 , b = x k 2 , gcd ( k 1 , k 2 ) = 1 a=xk_1,b=xk_2,\gcd(k_1,k_2)=1 a=xk1,b=xk2,gcd(k1,k2)=1, a , 2 a , 3 a ⋯ b a a,2a,3a\cdots ba a,2a,3a⋯ba 分别除以 b b b 得 k 1 k 2 , 2 k 1 k 2 , ⋯ k 2 k 1 k 2 , ( k 2 + 1 ) k 1 k 2 ⋯ 2 k 2 k 1 k 2 , ( 2 k 2 + 1 ) k 1 k 2 , ⋯ x k 2 k 1 k 2 \dfrac{k_1}{k_2},\dfrac{2k_1}{k_2},\cdots \dfrac{k_2k_1}{k_2},\dfrac{(k_2+1)k_1}{k_2}\cdots \dfrac{2k_2k_1}{k_2},\dfrac{(2k_2+1)k_1}{k_2},\cdots \dfrac{xk_2k_1}{k_2} k2k1,k22k1,⋯k2k2k1,k2(k2+1)k1⋯k22k2k1,k2(2k2+1)k1,⋯k2xk2k1 。由于 gcd ( k 1 , k 2 ) = 1 \gcd(k_1,k_2)=1 gcd(k1,k2)=1,,所以只有 x x x 个数 k 2 k 1 k 2 , 2 k 2 k 1 k 2 , ⋯ x k 2 k 1 k 2 ∈ Z \dfrac{k_2k_1}{k_2},\dfrac{2k_2k_1}{k_2},\cdots \dfrac{xk_2k_1}{k_2} \in\mathbb{Z} k2k2k1,k22k2k1,⋯k2xk2k1∈Z 。
(未完)