数论 I(整除性)

数论 I(整除性)


>> 整除

定义

a , b ∈ Z a,b\in \mathbb{Z} a,bZ,并且 a ≠ 0 a\neq0 a=0 ∃   q ∈ Z \exists \ q\in \mathbb{Z}  qZ 使得 a q = b aq=b aq=b,则称 b b b 能被 a a a 整除(记做 a ∣ b a\mid b ab),否则称 b b b 不能被 a a a 整除(记做 a ∤ b a\nmid b ab)。

性质

#1 整除的传递性:若 a ∣ b a\mid b ab b ∣ c b \mid c bc ,则 a ∣ c a \mid c ac

∵ a ∣ b \quad\quad \because a \mid b ab

∴ a x = b   ( x ∈ Z , x ≠ 0 ) \quad\quad \therefore ax=b\ (x \in \mathbb{Z},x\neq0) ax=b (xZ,x=0)

∵ b ∣ c \quad\quad \because b \mid c bc

∴ b y = c   ( y ∈ Z , y ≠ 0 ) \quad\quad \therefore by=c\ (y\in \mathbb{Z},y\neq0) by=c (yZ,y=0)

∴ a x y = c   ( x ∈ Z , y ∈ Z , x ≠ 0 , y ≠ 0 ) \quad\quad \therefore axy=c\ (x\in \mathbb{Z},y\in \mathbb{Z},x\neq0,y\neq0) axy=c (xZ,yZ,x=0,y=0)

∵ x y ∈ Z \quad\quad \because xy \in \mathbb{Z} xyZ

∴ a ∣ c \quad\quad \therefore a\mid c ac

#2: 若 a ∣ b a\mid b ab a ∣ c a\mid c ac ,则 ∀   x , y \forall \ x,y  x,y a ∣ ( b x + c y ) a\mid (bx+cy) a(bx+cy)

∵ a ∣ b \quad\quad \because a\mid b ab

∴ a s = b   ( s ∈ Z , s ≠ 0 ) \quad\quad \therefore as=b\ (s\in \mathbb{Z},s\neq0) as=b (sZ,s=0)

∵ a ∣ c \quad\quad \because a \mid c ac

∴ a t = c   ( t ∈ Z , t ≠ 0 ) \quad\quad \therefore at=c\ (t\in\mathbb{Z},t\neq0) at=c (tZ,t=0)

∴ b x + c y = a s x + a t y = a ( s x + t y ) \quad\quad \therefore bx+cy=asx+aty=a(sx+ty) bx+cy=asx+aty=a(sx+ty)

∵ x ∈ Z , y ∈ Z \quad\quad \because x\in\mathbb{Z},y\in\mathbb{Z} xZ,yZ

∴ s x + t y ∈ Z \quad\quad \therefore sx+ty\in\mathbb{Z} sx+tyZ

∴ a ∣ ( b x + c y ) \quad\quad \therefore a\mid (bx+cy) a(bx+cy)

#3 ∃   m ≠ 0 \exists \ m\neq 0  m=0 a ∣ b a\mid b ab ,则 a m ∣ b m am \mid bm ambm

∵ a ∣ b \quad\quad \because a \mid b ab

∴ a x = b   ( x ∈ Z , x ≠ 0 ) \quad\quad \therefore ax = b\ (x\in\mathbb{Z},x\neq0) ax=b (xZ,x=0)

∴ a x m = b m   ( x ∈ Z , x ≠ 0 ) \quad\quad \therefore axm=bm\ (x\in\mathbb{Z},x\neq0) axm=bm (xZ,x=0)

∴ a m ∣ b m \quad\quad \therefore am \mid bm ambm

#4: 设 x , y ∈ Z x,y\in\mathbb{Z} x,yZ a x + b y = 1 ax+by=1 ax+by=1,且 a ∣ n , b ∣ n a\mid n,b\mid n an,bn,那么 ( a b ) ∣ n (ab) \mid n (ab)n

∵ a ∣ n \quad\quad \because a\mid n an

∴ a s = n   ( s ∈ Z , s ≠ 0 ) \quad\quad \therefore as=n\ (s\in\mathbb{Z},s\neq0) as=n (sZ,s=0)

∵ b ∣ n \quad\quad \because b\mid n bn

∴ b t = n   ( t ∈ Z , t ≠ 0 ) \quad\quad \therefore bt=n\ (t\in\mathbb{Z},t\neq0) bt=n (tZ,t=0)

∴ s t = n 2 a b \quad\quad \therefore st=\dfrac{n^2}{ab} st=abn2

∵ a x + b y = 1 \quad\quad \because ax+by=1 ax+by=1

∴ n s x + n t y = 1 \quad\quad \therefore \dfrac{n}{s}x+\dfrac{n}{t}y=1 snx+tny=1

∴ t x + s y = s t n \quad\quad \therefore tx+sy=\dfrac{st}{n} tx+sy=nst

∴ t x + s y = n a b \quad\quad \therefore tx+sy=\dfrac{n}{ab} tx+sy=abn

∵ x ∈ Z , y ∈ Z \quad\quad \because x\in\mathbb{Z},y\in\mathbb{Z} xZ,yZ

∴ t x + s y ∈ Z \quad\quad \therefore tx+sy\in\mathbb{Z} tx+syZ

∴ ( a b ) ∣ n \quad\quad \therefore (ab) \mid n (ab)n

#5: 若 b = d q + c   ( q ∈ Z ) b=dq+c\ (q\in\mathbb{Z}) b=dq+c (qZ),那么 d ∣ b d\mid b db 的充要条件为 d ∣ c d\mid c dc

\quad\quad d ∣ b d\mid b db 成立,则 d x = b   ( x ∈ Z , x ≠ 0 ) dx=b\ (x\in\mathbb{Z},x\neq0) dx=b (xZ,x=0)

∴ d x = d q + c \quad\quad \therefore dx=dq+c dx=dq+c

∴ c = d ( x − q ) \quad\quad \therefore c=d(x-q) c=d(xq)

∵ x ∈ Z , q ∈ Z \quad\quad \because x\in\mathbb{Z},q\in\mathbb{Z} xZ,qZ

∴ x − q ∈ Z \quad\quad \therefore x-q\in\mathbb{Z} xqZ

∴ d ∣ c \quad\quad \therefore d\mid c dc

\quad\quad d ∣ c d\mid c dc 成立,则 d y = c   ( y ∈ Z , y ≠ 0 ) dy=c\ (y\in\mathbb{Z},y\neq0) dy=c (yZ,y=0)

∴ b = d q + d y \quad\quad \therefore b=dq+dy b=dq+dy

∴ b = d ( y + q ) \quad\quad \therefore b=d(y+q) b=d(y+q)

∵ y ∈ Z , q ∈ Z \quad\quad \because y\in\mathbb{Z},q\in\mathbb{Z} yZ,qZ

∴ y + q ∈ Z \quad\quad \therefore y+q\in\mathbb{Z} y+qZ

∴ d ∣ b \quad\quad \therefore d\mid b db


>> 模运算

定义

a , b ∈ Z a,b\in\mathbb{Z} a,bZ,其中 b ≠ 0 b\neq0 b=0,求 a a a b b b 的余数,称为 a a a b b b,记做 a  ⁣ ⁣ m o d    b a\!\!\mod b amodb

性质

#1 分配律 ( a  op  b )  ⁣ ⁣ m o d    m = ( a  ⁣ ⁣ m o d    m  op  b  ⁣ ⁣ m o d    m )  ⁣ ⁣ m o d    m (a \ \text{op} \ b) \!\!\mod m=(a \!\!\mod m \ \text{op} \ b \!\!\mod m) \!\!\mod m (a op b)modm=(amodm op bmodm)modm ,其中 op \text{op} op + , − , × +,-,\times +,,×

\quad\quad (加法)

\quad\quad a = m q 1 + r 1 , b = m q 2 + r 2 a=mq_1+r_1,b=mq_2+r_2 a=mq1+r1,b=mq2+r2

∴ ( a + b )  ⁣ ⁣ m o d    m = ( m q 1 + r 1 + m q 2 + r 2 )  ⁣ ⁣ m o d    m \quad\quad \therefore (a+b) \!\!\mod m=(mq_1+r_1+mq_2+r_2) \!\!\mod m (a+b)modm=(mq1+r1+mq2+r2)modm

    = ( m ( q 1 + q 2 ) + r 1 + r 2 )  ⁣ ⁣ m o d    m \quad\quad \quad\quad \quad\quad \quad\quad \quad\ \ \ =(m(q_1+q_2)+r_1+r_2) \!\!\mod m    =(m(q1+q2)+r1+r2)modm

\quad\quad K = ( q 1 + q 2 ) , N = ( r 1 + r 2 ) K=(q_1+q_2),N=(r_1+r_2) K=(q1+q2),N=(r1+r2)

\quad\quad ( a + b )  ⁣ ⁣ m o d    m = ( m K + N )  ⁣ ⁣ m o d    m = N  ⁣ ⁣ m o d    m = ( r 1 + r 2 )  ⁣ ⁣ m o d    m (a+b)\!\!\mod m=(mK+N) \!\!\mod m=N \!\!\mod m=(r_1+r_2)\!\!\mod m (a+b)modm=(mK+N)modm=Nmodm=(r1+r2)modm

\quad\quad ( a + b )  ⁣ ⁣ m o d    m = ( a  ⁣ ⁣ m o d    m + b  ⁣ ⁣ m o d    m )  ⁣ ⁣ m o d    m (a+b)\!\!\mod m=(a\!\!\mod m+b\!\!\mod m) \!\!\mod m (a+b)modm=(amodm+bmodm)modm

\quad\quad (减法同加法)

\quad\quad (乘法)

\quad\quad a = m q 1 + r 1 , b = m q 2 + r 2 a=mq_1+r_1,b=mq_2+r_2 a=mq1+r1,b=mq2+r2

∴ ( a b )  ⁣ ⁣ m o d    m = ( ( m q 1 + r 1 ) ( m q 2 + r 2 ) )  ⁣ ⁣ m o d    m \quad\quad \therefore (ab) \!\!\mod m=((mq_1+r_1)(mq_2+r_2)) \!\!\mod m (ab)modm=((mq1+r1)(mq2+r2))modm

   = ( m 2 q 1 q 2 + m q 1 r 2 + m q 2 r 1 + r 1 r 2 )  ⁣ ⁣ m o d    m \quad\quad \quad\quad \quad\quad \quad\quad \ \ =(m^2q_1q_2+mq_1r_2+mq_2r_1+r_1r_2) \!\!\mod m   =(m2q1q2+mq1r2+mq2r1+r1r2)modm

   = ( m ( m q 1 q 2 + q 1 r 2 + q 2 r 1 ) + r 1 r 2 )  ⁣ ⁣ m o d    m \quad\quad \quad\quad \quad\quad \quad\quad \ \ =(m(mq_1q_2+q_1r_2+q_2r_1)+r_1r_2) \!\!\mod m   =(m(mq1q2+q1r2+q2r1)+r1r2)modm

\quad\quad K = ( m q 1 q 2 + q 1 r 2 + q 2 r 1 ) , N = r 1 r 2 K=(mq_1q_2+q_1r_2+q_2r_1),N=r_1r_2 K=(mq1q2+q1r2+q2r1),N=r1r2

\quad\quad ( a b )  ⁣ ⁣ m o d    m = ( m K + N )  ⁣ ⁣ m o d    m = N  ⁣ ⁣ m o d    m = ( r 1 r 2 )  ⁣ ⁣ m o d    m (ab) \!\!\mod m = (mK+N) \!\!\mod m = N \!\!\mod m = (r_1r_2) \!\!\mod m (ab)modm=(mK+N)modm=Nmodm=(r1r2)modm

\quad\quad ( a b )  ⁣ ⁣ m o d    m = ( a  ⁣ ⁣ m o d    m + b  ⁣ ⁣ m o d    m )  ⁣ ⁣ m o d    m (ab) \!\!\mod m = (a \!\!\mod m+b\!\!\mod m) \!\!\mod m (ab)modm=(amodm+bmodm)modm

#1* a b  ⁣ ⁣ m o d    m = ( a  ⁣ ⁣ m o d    m ) b  ⁣ ⁣ m o d    m a^b\!\!\mod m=(a\!\!\mod m)^b\!\!\mod m abmodm=(amodm)bmodm

\quad\quad (证明同乘法)

#2 放缩性:若 a  ⁣ ⁣ m o d    b = c a \!\!\mod b = c amodb=c d ≠ 0 d\neq0 d=0 d ∈ Z d\in\mathbb{Z} dZ,则 ( a d )  ⁣ ⁣ m o d    ( b d ) = c d (ad) \!\!\mod (bd)=cd (ad)mod(bd)=cd

\quad\quad b q + c = a bq+c=a bq+c=a

∴ b d q + c d = a d \quad\quad \therefore bdq+cd=ad bdq+cd=ad

∴ ( a d )  ⁣ ⁣ m o d    ( b d ) = c d \quad\quad \therefore (ad) \!\! \mod (bd)=cd (ad)mod(bd)=cd

#3: 若 2 2 2 能整除数 a a a 的最后一位,则 2 ∣ a 2\mid a 2a

\quad\quad a = x 1 x 2 x 3 ⋯ x n − 1 x n ‾ a=\overline{x_1x_2x_3\cdots x_{n-1}x_n} a=x1x2x3xn1xn

∴ a = x 1 x 2 x 3 ⋯ x n − 1 ‾ × 10 + x n \quad\quad \therefore a = \overline{x_1x_2x_3\cdots x_{n-1}}\times 10+x_n a=x1x2x3xn1×10+xn

∵ 2 ∣ x n , 2 ∣ 10 \quad\quad \because 2 \mid x_n,2\mid 10 2xn,210

∴ 2 ∣ a \quad\quad \therefore 2 \mid a 2a

#3*: 若 4 4 4 能整除数 a a a 的最后两位,则 4 ∣ a 4 \mid a 4a

\quad\quad a = x 1 x 2 x 3 ⋯ x n − 2 x n − 1 x n ‾ a=\overline{x_1x_2x_3\cdots x_{n-2}x_{n-1}x_n} a=x1x2x3xn2xn1xn

∴ a = x 1 x 2 x 3 ⋯ x n − 2 ‾ × 100 + x n − 1 x n ‾ \quad\quad \therefore a = \overline{x_1x_2x_3\cdots x_{n-2}}\times 100+\overline{x_{n-1}x_n} a=x1x2x3xn2×100+xn1xn

∵ 4 ∣ x n − 1 x n ‾ , 4 ∣ 100 \quad\quad \because 4 \mid \overline{x_{n-1}x_n},4\mid 100 4xn1xn,4100

∴ 4 ∣ a \quad\quad \therefore 4 \mid a 4a

#4: 若 3 3 3 能整除数 a a a 的各位数字之和,则 3 ∣ a 3 \mid a 3a

\quad\quad a = x 1 x 2 x 3 ⋯ x n − 1 x n ‾ a=\overline{x_1x_2x_3\cdots x_{n-1}x_n} a=x1x2x3xn1xn

∴ 3 ∣ ∑ i = 1 n x i \quad\quad \therefore 3\mid \sum_{i=1}^{n}x_i 3i=1nxi

∴ ( ∑ i = 1 n x i )  ⁣ ⁣ m o d    3 = 0 \quad\quad \therefore \left(\sum_{i=1}^{n}x_i\right) \!\!\mod 3 = 0 (i=1nxi)mod3=0

∵ a = 1 0 n − 1 x 1 + 1 0 n − 2 x 2 + ⋯ + 10 x n − 1 + x n \quad\quad \because a=10^{n-1}x_1+10^{n-2}x_2+\cdots+10x_{n-1}+x_n a=10n1x1+10n2x2++10xn1+xn

∴ a  ⁣ ⁣ m o d    3 = ( 1 0 n − 1 x 1 + 1 0 n − 2 x 2 + ⋯ + 10 x n − 1 + x n )  ⁣ ⁣ m o d    3 \quad\quad \therefore a \!\!\mod 3=(10^{n-1}x_1+10^{n-2}x_2+\cdots+10x_{n-1}+x_n) \!\!\mod 3 amod3=(10n1x1+10n2x2++10xn1+xn)mod3

     = ( 1 0 n − 1 x 1  ⁣ ⁣ m o d    3 + 1 0 n − 2 x 2  ⁣ ⁣ m o d    3 + ⋯ + 10 x n − 1  ⁣ ⁣ m o d    3 + x n  ⁣ ⁣ m o d    3 )  ⁣ ⁣ m o d    3 \quad\quad \quad\quad \quad\quad \ \ \ \ =(10^{n-1}x_1 \!\!\mod 3+10^{n-2}x_2 \!\!\mod 3+\cdots+10x_{n-1} \!\!\mod 3+x_n \!\!\mod 3) \!\!\mod 3     =(10n1x1mod3+10n2x2mod3++10xn1mod3+xnmod3)mod3

     = ( ( 1 0 n − 1 − 1 + 1 ) x 1  ⁣ ⁣ m o d    3 + ( 1 0 n − 2 − 1 + 1 ) x 2  ⁣ ⁣ m o d    3 + ⋯ + ( 9 + 1 ) x n − 1  ⁣ ⁣ m o d    3 + x n  ⁣ ⁣ m o d    3 )  ⁣ ⁣ m o d    3 \quad\quad \quad\quad \quad\quad \ \ \ \ =((10^{n-1}-1+1)x_1\!\!\mod 3+(10^{n-2}-1+1)x_2\!\!\mod 3+\cdots+(9+1)x_{n-1}\!\!\mod 3+x_n\!\!\mod 3)\!\!\mod 3     =((10n11+1)x1mod3+(10n21+1)x2mod3++(9+1)xn1mod3+xnmod3)mod3

= ( x 1 + x 2 + x 3 + ⋯ + x n − 1 + x n )  ⁣ ⁣ m o d    3 \quad\quad \quad\quad \quad\quad \quad=(x_1+x_2+x_3+\cdots+x_{n-1}+x_{n}) \!\!\mod 3 =(x1+x2+x3++xn1+xn)mod3

= ( ∑ i = 1 n x i )  ⁣ ⁣ m o d    3 \quad\quad \quad\quad \quad\quad \quad=\left(\sum_{i=1}^nx_i\right) \!\!\mod 3 =(i=1nxi)mod3

= 0 \quad\quad \quad\quad \quad\quad \quad =0 =0

∴ 3 ∣ a \quad\quad \therefore 3 \mid a 3a

#4*: 若 9 9 9 能整除数 a a a 的各位数字之和,则 9 ∣ a 9 \mid a 9a

\quad\quad a = x 1 x 2 x 3 ⋯ x n − 1 x n ‾ a=\overline{x_1x_2x_3\cdots x_{n-1}x_n} a=x1x2x3xn1xn

∴ 9 ∣ ∑ i = 1 n x i \quad\quad \therefore 9\mid \sum_{i=1}^{n}x_i 9i=1nxi

∴ ( ∑ i = 1 n x i )  ⁣ ⁣ m o d    9 = 0 \quad\quad \therefore \left(\sum_{i=1}^{n}x_i\right) \!\!\mod 9 = 0 (i=1nxi)mod9=0

∵ a = 1 0 n − 1 x 1 + 1 0 n − 2 x 2 + ⋯ + 10 x n − 1 + x n \quad\quad \because a=10^{n-1}x_1+10^{n-2}x_2+\cdots+10x_{n-1}+x_n a=10n1x1+10n2x2++10xn1+xn

∴ a  ⁣ ⁣ m o d    9 = ( 1 0 n − 1 x 1 + 1 0 n − 2 x 2 + ⋯ + 10 x n − 1 + x n )  ⁣ ⁣ m o d    9 \quad\quad \therefore a \!\!\mod 9=(10^{n-1}x_1+10^{n-2}x_2+\cdots+10x_{n-1}+x_n) \!\!\mod 9 amod9=(10n1x1+10n2x2++10xn1+xn)mod9

= ( 1 0 n − 1 x 1  ⁣ ⁣ m o d    9 + 1 0 n − 2 x 2  ⁣ ⁣ m o d    9 + ⋯ + 10 x n − 1  ⁣ ⁣ m o d    9 + x n  ⁣ ⁣ m o d    9 )  ⁣ ⁣ m o d    9 \quad\quad \quad\quad \quad\quad \quad=(10^{n-1}x_1 \!\!\mod 9+10^{n-2}x_2 \!\!\mod 9+\cdots+10x_{n-1} \!\!\mod 9+x_n \!\!\mod 9) \!\!\mod 9 =(10n1x1mod9+10n2x2mod9++10xn1mod9+xnmod9)mod9

= ( ( 1 0 n − 1 − 1 + 1 ) x 1  ⁣ ⁣ m o d    9 + ( 1 0 n − 2 − 1 + 1 ) x 2  ⁣ ⁣ m o d    9 + ⋯ + ( 9 + 1 ) x n − 1  ⁣ ⁣ m o d    9 + x n  ⁣ ⁣ m o d    9 )  ⁣ ⁣ m o d    9 \quad\quad \quad\quad \quad\quad \quad=((10^{n-1}-1+1)x_1\!\!\mod 9+(10^{n-2}-1+1)x_2\!\!\mod 9+\cdots+(9+1)x_{n-1}\!\!\mod 9+x_n\!\!\mod 9)\!\!\mod 9 =((10n11+1)x1mod9+(10n21+1)x2mod9++(9+1)xn1mod9+xnmod9)mod9

= ( x 1 + x 2 + x 3 + ⋯ + x n − 1 + x n )  ⁣ ⁣ m o d    9 \quad\quad \quad\quad \quad\quad \quad=(x_1+x_2+x_3+\cdots+x_{n-1}+x_{n}) \!\!\mod 9 =(x1+x2+x3++xn1+xn)mod9

= ( ∑ i = 1 n x i )  ⁣ ⁣ m o d    9 \quad\quad \quad\quad \quad\quad \quad=\left(\sum_{i=1}^nx_i\right) \!\!\mod 9 =(i=1nxi)mod9

= 0 \quad\quad \quad\quad \quad\quad \quad=0 =0

∴ 9 ∣ a \quad\quad \therefore 9\mid a 9a

#5: 若 11 11 11 能整除数 a a a 偶数位上各位数字之和与奇数位上各位数字之差,则 11 ∣ a 11\mid a 11a

\quad\quad a = x 1 x 2 x 3 ⋯ x n − 1 x n ‾ a=\overline{x_1x_2x_3\cdots x_{n-1}x_n} a=x1x2x3xn1xn

\quad\quad n  ⁣ ⁣ m o d    2 = 0 n \!\!\mod 2=0 nmod2=0 时, ( ( x 1 + x 3 + x 5 + ⋯ + x n − 1 ) − ( x 2 + x 4 + x 6 + ⋯ + x n ) )  ⁣ ⁣ m o d    11 = 0 ((x_1+x_3+x_5+\cdots+x_{n-1})-(x_2+x_4+x_6+\cdots+x_n))\!\!\mod 11=0 ((x1+x3+x5++xn1)(x2+x4+x6++xn))mod11=0

\quad\quad n  ⁣ ⁣ m o d    2 = 1 n \!\!\mod 2=1 nmod2=1 时, ( ( x 2 + x 4 + x 6 + ⋯ + x n ) − ( x 1 + x 3 + x 5 + ⋯ + x n − 1 ) )  ⁣ ⁣ m o d    11 = 0 ((x_2+x_4+x_6+\cdots+x_n)-(x_1+x_3+x_5+\cdots+x_{n-1})) \!\!\mod11=0 ((x2+x4+x6++xn)(x1+x3+x5++xn1))mod11=0

∵ x  ⁣ ⁣ m o d    k = ( − x )  ⁣ ⁣ m o d    k \quad\quad\because x\!\!\mod k=(-x) \!\!\mod k xmodk=(x)modk

∴ \quad\quad\therefore 上述两种情况等价(以情况一为例)

∵ a = 1 0 n − 1 x 1 + 1 0 n − 2 x 2 + ⋯ + 10 x n − 1 + x n \quad\quad\because a=10^{n-1}x_1+10^{n-2}x_2+\cdots+10x_{n-1}+x_n a=10n1x1+10n2x2++10xn1+xn

∴ a  ⁣ ⁣ m o d    11 = ( 1 0 n − 1 x 1 + 1 0 n − 2 x 2 + ⋯ + 10 x n − 1 + x n )  ⁣ ⁣ m o d    11 \quad\quad\therefore a \!\!\mod 11=(10^{n-1}x_1+10^{n-2}x_2+\cdots+10x_{n-1}+x_n) \!\!\mod 11 amod11=(10n1x1+10n2x2++10xn1+xn)mod11

   = ( 1 0 n − 1 x 1  ⁣ ⁣ m o d    11 + 1 0 n − 2 x 2  ⁣ ⁣ m o d    11 + ⋯ + 10 x n − 1  ⁣ ⁣ m o d    11 + x n  ⁣ ⁣ m o d    11 )  ⁣ ⁣ m o d    11 \quad\quad\quad\quad\quad\quad\quad\ \ =(10^{n-1}x_1 \!\!\mod 11+10^{n-2}x_2 \!\!\mod 11+\cdots+10x_{n-1} \!\!\mod 11+x_n \!\!\mod 11) \!\!\mod 11   =(10n1x1mod11+10n2x2mod11++10xn1mod11+xnmod11)mod11

   = ( ( 1 0 n − 1 − 1 + 1 ) x 1  ⁣ ⁣ m o d    9 + ( 1 0 n − 2 + 1 − 1 ) x 2  ⁣ ⁣ m o d    9 + ⋯ + ( 9 + 1 ) x n − 1  ⁣ ⁣ m o d    9 + x n  ⁣ ⁣ m o d    9 )  ⁣ ⁣ m o d    9 \quad\quad\quad\quad\quad\quad\quad\ \ =((10^{n-1}-1+1)x_1\!\!\mod 9+(10^{n-2}+1-1)x_2\!\!\mod 9+\cdots+(9+1)x_{n-1}\!\!\mod 9+x_n\!\!\mod 9)\!\!\mod 9   =((10n11+1)x1mod9+(10n2+11)x2mod9++(9+1)xn1mod9+xnmod9)mod9

   = ( ( x 1 + x 3 + x 5 + ⋯ + x n − 1 ) − ( x 2 + x 4 + x 6 + ⋯ + x n ) )  ⁣ ⁣ m o d    11 \quad\quad\quad\quad\quad\quad\quad\ \ =((x_1+x_3+x_5+\cdots+x_{n-1})-(x_2+x_4+x_6+\cdots+x_n))\!\!\mod 11   =((x1+x3+x5++xn1)(x2+x4+x6++xn))mod11

   = 0 \quad\quad\quad\quad\quad\quad\quad\ \ =0   =0

∴ 11 ∣ a \quad\quad\therefore 11\mid a 11a

#6: 若 7 , 11 , 13 7,11,13 7,11,13 能整除数 a a a 末三位与末三位之前的数字所组成的数的差,则 7 ∣ a , 11 ∣ a , 13 ∣ a 7\mid a,11\mid a,13\mid a 7a,11a,13a

\quad\quad a = x 1 x 2 x 3 ⋯ x n − 1 x n ‾ a=\overline{x_1x_2x_3\cdots x_{n-1}x_n} a=x1x2x3xn1xn

∵ lcm ( 7 , 11 , 13 ) = 1001 \quad\quad\because \text{lcm}(7,11,13)=1001 lcm(7,11,13)=1001

∴ 7 ∣ a , 11 ∣ a , 13 ∣ a \quad\quad\therefore 7\mid a,11\mid a,13\mid a 7a,11a,13a 1001 ∣ a 1001\mid a 1001a 的充要条件。

∴ ( x n − 2 x n − 1 x n ‾ − x 1 x 2 x 3 ⋯ x n − 3 ‾ )  ⁣ ⁣ m o d    1001 = 0 \quad\quad\therefore (\overline{x_{n-2}x_{n-1}x_n}-\overline{x_1x_2x_3\cdots x_{n-3}}) \!\!\mod 1001=0 (xn2xn1xnx1x2x3xn3)mod1001=0

∵ a = 1 0 n − 1 x 1 + 1 0 n − 2 x 2 + ⋯ + 10 x n − 1 + x n \quad\quad\because a=10^{n-1}x_1+10^{n-2}x_2+\cdots+10x_{n-1}+x_n a=10n1x1+10n2x2++10xn1+xn

∴ a  ⁣ ⁣ m o d    1001 = ( x 1 x 2 x 3 ⋯ x n − 3 ‾ × 1000 + x n − 2 x n − 1 x n ‾ )  ⁣ ⁣ m o d    1001 \quad\quad\therefore a\!\!\mod 1001=(\overline{x_1x_2x_3\cdots x_{n-3}}\times1000+\overline{x_{n-2}x_{n-1}x_n}) \!\!\mod 1001 amod1001=(x1x2x3xn3×1000+xn2xn1xn)mod1001

   = ( x 1 x 2 x 3 ⋯ x n − 3 ‾ × 1000  ⁣ ⁣ m o d    1001 + x n − 2 x n − 1 x n ‾  ⁣ ⁣ m o d    1001 )  ⁣ ⁣ m o d    1001 \quad\quad\quad\quad\quad\quad\quad\quad\ \ = (\overline{x_1x_2x_3\cdots x_{n-3}}\times1000 \!\!\mod 1001+\overline{x_{n-2}x_{n-1}x_n}\!\!\mod 1001) \!\!\mod 1001   =(x1x2x3xn3×1000mod1001+xn2xn1xnmod1001)mod1001

   = ( x 1 x 2 x 3 ⋯ x n − 3 ‾ × ( 1001 − 1 )  ⁣ ⁣ m o d    1001 + x n − 2 x n − 1 x n ‾ )  ⁣ ⁣ m o d    1001 \quad\quad\quad\quad\quad\quad\quad\quad\ \ = (\overline{x_1x_2x_3\cdots x_{n-3}}\times(1001-1) \!\!\mod 1001+\overline{x_{n-2}x_{n-1}x_n}) \!\!\mod 1001   =(x1x2x3xn3×(10011)mod1001+xn2xn1xn)mod1001

   = ( x n − 2 x n − 1 x n ‾ − x 1 x 2 x 3 ⋯ x n − 3 ‾ )  ⁣ ⁣ m o d    1001 \quad\quad\quad\quad\quad\quad\quad\quad\ \ =(\overline{x_{n-2}x_{n-1}x_n}-\overline{x_1x_2x_3\cdots x_{n-3}}) \!\!\mod 1001   =(xn2xn1xnx1x2x3xn3)mod1001

   = 0 \quad\quad\quad\quad\quad\quad\quad\quad\ \ =0   =0

∴ 1001 ∣ a \quad\quad\therefore 1001\mid a 1001a

∴ 7 ∣ a , 11 ∣ a , 13 ∣ a \quad\quad\therefore 7\mid a,11\mid a,13\mid a 7a,11a,13a


>> 同余

定义

m ∈ Z + m\in\mathbb{Z}^+ mZ+,若 m ∣ ( a − b ) m \mid (a-b) m(ab),则称 a a a b b b 对模 m m m 同余,记做 a ≡ b ( m o d m ) a\equiv b\pmod m ab(modm),否则 a a a b b b 对模 m m m 一定不同余。

性质

#1 自反性 a ≡ a ( m o d m ) a\equiv a\pmod m aa(modm)

∵ m ∣ 0 \quad\quad\because m\mid 0 m0

∴ m ∣ ( a − a ) \quad\quad\therefore m\mid(a-a) m(aa)

∴ a ≡ a ( m o d m ) \quad\quad\therefore a\equiv a\pmod m aa(modm)

#2 对称性:若 a ≡ b ( m o d m ) a\equiv b\pmod m ab(modm),则 b ≡ a ( m o d m ) b \equiv a\pmod m ba(modm)

∵ a ≡ b ( m o d m ) \quad\quad\because a\equiv b\pmod m ab(modm)

∴ m ∣ ( a − b ) \quad\quad\therefore m\mid(a-b) m(ab)

∵ m ∣ x = m ∣ ( − x ) \quad\quad\because m\mid x=m\mid(-x) mx=m(x)

∴ m ∣ ( b − a ) \quad\quad\therefore m\mid(b-a) m(ba)

∴ b ≡ a ( m o d m ) \quad\quad\therefore b\equiv a\pmod m ba(modm)

#3 传递性:若 a ≡ b ( m o d m ) a\equiv b\pmod m ab(modm) b ≡ c ( m o d m ) b\equiv c\pmod m bc(modm),则 a ≡ c ( m o d m ) a\equiv c\pmod m ac(modm)

∵ a ≡ b ( m o d m ) \quad\quad\because a\equiv b\pmod m ab(modm)

∴ m ∣ ( a − b ) \quad\quad\therefore m \mid (a-b) m(ab)

∵ b ≡ c ( m o d m ) \quad\quad\because b\equiv c\pmod m bc(modm)

∴ m ∣ ( b − c ) \quad\quad\therefore m\mid(b-c) m(bc)

∴ m ∣ ( a − b ) + ( b − c ) \quad\quad\therefore m\mid(a-b)+(b-c) m(ab)+(bc)

∴ m ∣ ( a − c ) \quad\quad\therefore m\mid (a-c) m(ac)

∴ a ≡ c ( m o d m ) \quad\quad\therefore a\equiv c\pmod m ac(modm)

#4 同加 / 减 / 乘性:若 a ≡ b ( m o d m ) a\equiv b\pmod m ab(modm) c ∈ Z c\in\mathbb{Z} cZ,则 ( a  op  c ) ≡ ( b  op  c ) ( m o d m ) (a\ \text{op}\ c)\equiv(b\ \text{op}\ c)\pmod m (a op c)(b op c)(modm) ,其中 op \text{op} op + , − , × +,-,\times +,,×

\quad\quad (以加法为例)

∵ a ≡ b ( m o d m ) \quad\quad\because a\equiv b\pmod m ab(modm)

∴ m ∣ ( a − b ) \quad\quad\therefore m \mid(a-b) m(ab)

∴ m ∣ ( a − b ) + c − c \quad\quad\therefore m \mid (a-b)+c-c m(ab)+cc

∴ m ∣ ( ( a + c ) − ( b + c ) ) \quad\quad\therefore m \mid ((a+c)-(b+c)) m((a+c)(b+c))

∴ ( a + c ) ≡ ( b + c ) ( m o d m ) \quad\quad\therefore (a+c)\equiv(b+c)\pmod m (a+c)(b+c)(modm)

#5 同除性:若 a ≡ b ( m o d m ) a\equiv b\pmod m ab(modm) c ∣ a c\mid a ca c ∣ b c\mid b cb gcd ⁡ ( c , m ) = 1 \gcd(c,m)=1 gcd(c,m)=1,则 a c ≡ b c ( m o d m ) \dfrac{a}{c}\equiv\dfrac{b}{c}\pmod m cacb(modm)

∵ a ≡ b ( m o d m ) \quad\quad\because a\equiv b\pmod m ab(modm)

∴ m ∣ ( a − b ) \quad\quad\therefore m\mid(a-b) m(ab)

\quad\quad m k = a − b mk=a-b mk=ab

\quad\quad m k + b = a mk+b=a mk+b=a

∴ m c k + b c = a c \quad\quad\therefore \dfrac{m}{c}k+\dfrac{b}{c}=\dfrac{a}{c} cmk+cb=ca

∵ c ∣ a , c ∣ b , gcd ⁡ ( c , m ) = 1 \quad\quad\because c\mid a,c\mid b,\gcd(c, m)=1 ca,cb,gcd(c,m)=1

∴ a c ∈ Z , b c ∈ Z , m c ∉ Z , m c ∈ R \quad\quad\therefore \dfrac{a}{c}\in\mathbb{Z},\dfrac{b}{c}\in\mathbb{Z},\dfrac{m}{c}\notin\mathbb{Z},\dfrac{m}{c}\in\mathbb{R} caZ,cbZ,cm/Z,cmR

∴ m c k ∈ Z \quad\quad\therefore \dfrac{m}{c}k\in\mathbb{Z} cmkZ

∴ c ∣ k \quad\quad\therefore c\mid k ck

\quad\quad c x = k cx = k cx=k

∴ m c x + b = a \quad\quad\therefore mcx+b=a mcx+b=a

∴ m x + b c = a c \quad\quad\therefore mx+\dfrac{b}{c}=\dfrac{a}{c} mx+cb=ca

∴ a c ≡ b c ( m o d m ) \quad\quad\therefore \dfrac{a}{c}\equiv\dfrac{b}{c}\pmod m cacb(modm)

#6 同幂性:若 a ≡ b ( m o d m ) a\equiv b\pmod m ab(modm) c ∈ Z + c\in\mathbb{Z}^+ cZ+,则 a c ≡ b c ( m o d m ) a^c\equiv b^c\pmod m acbc(modm)

∵ a ≡ b ( m o d m ) \quad\quad\because a\equiv b\pmod m ab(modm)

∴ a  ⁣ ⁣ m o d    m = b  ⁣ ⁣ m o d    m \quad\quad\therefore a\!\!\mod m=b\!\!\mod m amodm=bmodm

∴ ( a  ⁣ ⁣ m o d    m ) c  ⁣ ⁣ m o d    m = ( b  ⁣ ⁣ m o d    m ) c  ⁣ ⁣ m o d    m \quad\quad\therefore (a\!\!\mod m)^c\!\!\mod m=(b\!\!\mod m)^c\!\!\mod m (amodm)cmodm=(bmodm)cmodm

∴ a c  ⁣ ⁣ m o d    m = b c  ⁣ ⁣ m o d    m \quad\quad\therefore a^c\!\!\mod m=b^c\!\!\mod m acmodm=bcmodm

∴ a c ≡ b c ( m o d m ) \quad\quad\therefore a^c \equiv b^c\pmod m acbc(modm)

#7:若 a ≡ b ( m o d m ) a\equiv b\pmod m ab(modm) c ≡ d ( m o d m ) c\equiv d\pmod m cd(modm),则 ( a + c ) ≡ ( b + d ) ( m o d m ) (a+c)\equiv(b+d)\pmod m (a+c)(b+d)(modm)

∵ a ≡ b ( m o d m ) \quad\quad\because a\equiv b\pmod m ab(modm)

∴ m ∣ ( a − b ) \quad\quad\therefore m \mid (a-b) m(ab)

∵ c ≡ d ( m o d m ) \quad\quad\because c\equiv d\pmod m cd(modm)

∴ m ∣ ( c − d ) \quad\quad\therefore m\mid(c-d) m(cd)

∴ m ∣ ( ( a − b ) + ( c − d ) ) \quad\quad\therefore m\mid((a-b)+(c-d)) m((ab)+(cd))

∴ m ∣ ( ( a + c ) − ( b + d ) ) \quad\quad\therefore m\mid((a+c)-(b+d)) m((a+c)(b+d))

∴ ( a + c ) ≡ ( b + d ) ( m o d m ) \quad\quad\therefore (a+c)\equiv(b+d)\pmod m (a+c)(b+d)(modm)

#8:若 a  ⁣ ⁣ m o d    p = x a \!\!\mod p=x amodp=x a  ⁣ ⁣ m o d    q = x a \!\!\mod q=x amodq=x gcd ⁡ ( p , q ) = 1 \gcd(p,q)=1 gcd(p,q)=1,则 a  ⁣ ⁣ m o d    ( p q ) = x a\!\!\mod(pq)=x amod(pq)=x

∵ a  ⁣ ⁣ m o d    p = x , a  ⁣ ⁣ m o d    q = x \quad\quad\because a\!\!\mod p = x,a \!\!\mod q=x amodp=x,amodq=x

∴ a − x = p k 1 , a − x = q k 2 \quad\quad\therefore a-x=pk_1,a-x=qk_2 ax=pk1,ax=qk2

∴ a − x \quad\quad\therefore a-x ax p , q p,q p,q 公倍数

∵ gcd ⁡ ( p , q ) = 1 \quad\quad\because \gcd(p,q)=1 gcd(p,q)=1

∴ lcm ( p , q ) = p q \quad\quad\therefore \text{lcm}(p,q)=pq lcm(p,q)=pq

∴ p q ∣ ( a − x ) \quad\quad\therefore pq \mid (a-x) pq(ax)

∴ p q k 3 + x = a \quad\quad\therefore pqk_3+x=a pqk3+x=a

∴ a  ⁣ ⁣ m o d    ( p q ) = x \quad\quad\therefore a\!\!\mod (pq)=x amod(pq)=x


>> 习题

#Task I

\quad\quad 设奇数 x = 2 k + 1   ( k ∈ Z ) x=2k+1\ (k\in\mathbb{Z}) x=2k+1 (kZ)

\quad\quad ( 2 k + 1 ) 2 − 1 = 4 k 2 + 4 k + 1 − 1 (2k+1)^2-1=4k^2+4k+1-1 (2k+1)21=4k2+4k+11

= 4 k ( k + 1 ) \quad\quad\quad\quad\quad\quad\quad\quad\quad=4k(k+1) =4k(k+1)

\quad\quad k  ⁣ ⁣ m o d    2 = 1 k \!\!\mod 2=1 kmod2=1 时,原式 = 8 × k 2 ( k + 1 ) =8\times\dfrac{k}{2}(k+1) =8×2k(k+1),则 8 ∣ 8 × k 2 ( k + 1 ) 8 \mid 8\times\dfrac{k}{2}(k+1) 88×2k(k+1)

\quad\quad k  ⁣ ⁣ m o d    2 = 0 k \!\!\mod 2 = 0 kmod2=0 时,原式 = 8 k × k + 1 2 =8k\times \dfrac{k+1}{2} =8k×2k+1 ,则 8 ∣ 8 k × k + 1 2 8 \mid 8k\times \dfrac{k+1}{2} 88k×2k+1

\quad\quad 综上,任意奇数的平方为 8 8 8 的倍数。

#Task 2

\quad\quad n  ⁣ ⁣ m o d    2 = 0 n \!\!\mod 2=0 nmod2=0 时,

3 n + 1 = 3 n − 1 + 2 \quad\quad\quad\quad3^n+1=3^n-1+2 3n+1=3n1+2

= 2 ( 3 n − 1 + 3 n − 2 + ⋯ + 3 + 1 ) + 2 \quad\quad\quad\quad\quad\quad\quad=2(3^{n-1}+3^{n-2}+\cdots+3+1)+2 =2(3n1+3n2++3+1)+2

= 2 ( 3 n − 1 + 3 n − 2 + ⋯ + 3 + 1 + 1 ) \quad\quad\quad\quad\quad\quad\quad=2(3^{n-1}+3^{n-2}+\cdots+3+1+1) =2(3n1+3n2++3+1+1)

∴ 2 ∣ 3 n + 1 \quad\quad\quad\quad\therefore 2 \mid 3^n + 1 23n+1

\quad\quad n  ⁣ ⁣ m o d    2 = 1 n \!\!\mod 2=1 nmod2=1 时,

3 n + 1 = 4 ( 3 n − 1 − 3 n − 2 + ⋯ + 1 ) \quad\quad\quad\quad3^n+1=4(3^{n-1}-3^{n-2}+\cdots+1) 3n+1=4(3n13n2++1)

∴ 4 ∣ 3 n + 1 \quad\quad\therefore 4 \mid 3^n + 1 43n+1

\quad\quad 一般地,

\quad\quad\quad\quad 由数学归纳法可得 3 k  ⁣ ⁣ m o d    8 3^k\!\!\mod 8 3kmod8 的末尾为 1 , 3 , 1 , 3 1,3,1,3 1,3,1,3 的数列,进而 3 k + 1  ⁣ ⁣ m o d    8 3^k+1\!\!\mod 8 3k+1mod8 的末尾为 2 , 4 , 2 , 4 2,4,2,4 2,4,2,4 的数列,不可能被 8 8 8 整除。

∵ α > 2 \quad\quad\because \alpha>2 α>2

∴ 2 α ⩾ 8 \quad\quad\therefore 2^\alpha\geqslant8 2α8

∴ 2 α ∤ 3 n + 1 \quad\quad\therefore 2^\alpha \nmid 3^n+1 2α3n+1

#Task 3

\quad\quad r ⩾ ∣ b ∣ 2 r\geqslant\dfrac{|b|}{2} r2b 时, a = q b + r = ( q + 1 ) b − ( b − r ) = ( q + 1 ) b + ( r − b ) a=qb+r=(q+1)b-(b-r)=(q+1)b+(r-b) a=qb+r=(q+1)b(br)=(q+1)b+(rb)

∴ − ∣ b ∣ 2 ⩽ r < ∣ b ∣ 2 \quad\quad\therefore -\dfrac{|b|}{2}\leqslant r<\dfrac{|b|}{2} 2br<2b

#Task 4

\quad\quad 假设 17 ∣ 2 a + 3 b 17 \mid 2a+3b 172a+3b 成立,

2 a + 3 b ≡ 0 ( m o d 17 ) \quad\quad2a+3b\equiv0\pmod {17} 2a+3b0(mod17)

13 ( 2 a + 3 b ) ≡ 0 ( m o d 17 ) \quad\quad13(2a+3b)\equiv0\pmod {17} 13(2a+3b)0(mod17)

9 a + 5 b ≡ 0 ( m o d 17 ) \quad\quad9a+5b\equiv 0\pmod {17} 9a+5b0(mod17)

\quad\quad 得证。

\quad\quad 假设 17 ∣ 9 a + 5 b 17 \mid 9a+5b 179a+5b 成立,

9 a + 5 b ≡ 0 ( m o d 17 ) \quad\quad9a+5b\equiv0\pmod {17} 9a+5b0(mod17)

4 ( 9 a + 5 b ) ≡ 0 ( m o d 17 ) \quad\quad4(9a+5b)\equiv 0\pmod {17} 4(9a+5b)0(mod17)

2 a + 3 b ≡ 0 ( m o d 17 ) \quad\quad2a + 3b\equiv0\pmod {17} 2a+3b0(mod17)

\quad\quad 得证。

#Task 5

\quad\quad k  ⁣ ⁣ m o d    2 = 0 k \!\!\mod 2=0 kmod2=0 时,

∵ d 1 d k = n , d 2 d k − 1 = n , ⋯ \quad\quad\quad\quad\because d_1d_k=n,d_2d_{k-1}=n,\cdots d1dk=n,d2dk1=n,

∴ d 1 d 2 d 3 ⋯ d k = n k 2 \quad\quad\quad\quad\therefore d_1d_2d_3\cdots d_k=n^{\frac{k}{2}} d1d2d3dk=n2k

∴ ( d 1 d 2 d 3 ⋯ d k ) 2 = n k \quad\quad\quad\quad\therefore (d_1d_2d_3\cdots d_k)^2=n^k (d1d2d3dk)2=nk

\quad\quad k  ⁣ ⁣ m o d    2 = 1 k \!\!\mod 2=1 kmod2=1 时,

∵ d 1 d k = n , d 2 d k − 1 = n , ⋯ \quad\quad\quad\quad\because d_1d_k=n,d_2d_{k-1}=n,\cdots d1dk=n,d2dk1=n,

∴ d 1 d 2 d 3 ⋯ d k = n k − 1 2 × d k + 1 2 \quad\quad\quad\quad\therefore d_1d_2d_3\cdots d_k=n^{\frac{k-1}{2}}\times d_{\frac{k+1}{2}} d1d2d3dk=n2k1×d2k+1

∴ ( d 1 d 2 d 2 ⋯ d k ) 2 = n k − 1 × n = n k \quad\quad\quad\quad\therefore (d_1d_2d_2\cdots d_k)^2=n^{k-1}\times n=n^k (d1d2d2dk)2=nk1×n=nk

#Task 6

\quad\quad 手算。

\quad\quad (1) 2 2 2 (2) 17 17 17 (3) 6 6 6 (4) 23962230 23962230 23962230

#Task 7

∵ gcd ⁡ ( 1485 , 1745 ) = 5 \quad\quad\because \gcd(1485,1745)=5 gcd(1485,1745)=5

∴ 1485 s + 1745 t = 5 \quad\quad\therefore 1485s+1745t=5 1485s+1745t=5

\quad\quad 解得 s = − 47 + 439 k , t = 40 − 297 k s=-47+439k,t=40-297k s=47+439k,t=40297k

#Task 8

\quad\quad gcd ⁡ ( a m − 1 , a n − 1 ) = a s − 1 \gcd(a^m-1,a^n-1)=a^s-1 gcd(am1,an1)=as1

\quad\quad a s − 1 ∣ ( a m − 1 ) , a s − 1 ∣ ( a n − 1 ) a^s-1\mid (a^m-1),a^s-1\mid (a^n-1) as1(am1),as1(an1)

∴ s ∣ m , s ∣ n \quad\quad\therefore s \mid m,s\mid n sm,sn

∴ s m a x = gcd ⁡ ( m , n ) \quad\quad\therefore s_{max} = \gcd(m, n) smax=gcd(m,n)

\quad\quad gcd ⁡ ( a m − 1 , a n − 1 ) = a gcd ⁡ ( n , m ) − 1 \gcd(a^m-1,a^n-1)=a^{\gcd(n,m)} - 1 gcd(am1,an1)=agcd(n,m)1

#Task 9

\qquad x = gcd ⁡ ( a , b ) x=\gcd(a,b) x=gcd(a,b),则 a = x k 1 , b = x k 2 , gcd ⁡ ( k 1 , k 2 ) = 1 a=xk_1,b=xk_2,\gcd(k_1,k_2)=1 a=xk1,b=xk2,gcd(k1,k2)=1 a , 2 a , 3 a ⋯ b a a,2a,3a\cdots ba a,2a,3aba 分别除以 b b b k 1 k 2 , 2 k 1 k 2 , ⋯ k 2 k 1 k 2 , ( k 2 + 1 ) k 1 k 2 ⋯ 2 k 2 k 1 k 2 , ( 2 k 2 + 1 ) k 1 k 2 , ⋯ x k 2 k 1 k 2 \dfrac{k_1}{k_2},\dfrac{2k_1}{k_2},\cdots \dfrac{k_2k_1}{k_2},\dfrac{(k_2+1)k_1}{k_2}\cdots \dfrac{2k_2k_1}{k_2},\dfrac{(2k_2+1)k_1}{k_2},\cdots \dfrac{xk_2k_1}{k_2} k2k1,k22k1,k2k2k1,k2(k2+1)k1k22k2k1,k2(2k2+1)k1,k2xk2k1 。由于 gcd ⁡ ( k 1 , k 2 ) = 1 \gcd(k_1,k_2)=1 gcd(k1,k2)=1,,所以只有 x x x 个数 k 2 k 1 k 2 , 2 k 2 k 1 k 2 , ⋯ x k 2 k 1 k 2 ∈ Z \dfrac{k_2k_1}{k_2},\dfrac{2k_2k_1}{k_2},\cdots \dfrac{xk_2k_1}{k_2} \in\mathbb{Z} k2k2k1,k22k2k1,k2xk2k1Z

(未完)

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值