车辙轨迹预测线算法讲解和代码实现

车辙轨迹预测线算法讲解和代码实现

image

附赠自动驾驶学习资料和量产经验:链接

一、效果展示

image

image

image

image

image

image

鱼眼

image

去畸变

image

畸变矫正,正视图

image

畸变矫正,正视图,更广的角度;还是鱼眼图看得多一点

image

看下市场上的:

image

image

实验看起来算一致。

视频:

image

00:08

image

00:35

image

00:36

image

00:32

下面介绍原理。


二、原理介绍

两部分:分为车辙点生成和点的视图转换

1.车辙点生成

条件:(1)在AVM鸟瞰图上;(2)低速;

工具:(1)横向运动学模型;(2)在(1)基础上衍生出的小技巧,更简单

额外:(1)刻度线,1米2米3米;(2)车体,轮子,各种线

调优:(1)车辙点稀疏化;(2)用小技巧调整计算方式

2.点的视图间转换

视图类型:(1)鸟瞰图BEV,也即AVM;(2)鱼眼图FEV;(3)去畸变图(鱼眼图去畸变)(4)去畸变扳正图,把去畸变中前方物体扳正,正视图,相当于摄像头垂直拍车子前面和垂直拍车子后面;(5)更大视野范围的去畸变图

这些不同视图,统统以(1)鸟瞰图下的车辙点进行转换。

条件:(1)鸟瞰图上车辙点

调优:(1)这些视图上的车辙点稀疏化


分一条龙服务,从头到尾所有涉及一遍,再之后,直接调用现成的AVM标定好以后的结果计算车辙。所以,先从复杂的开始讲,再到简单的方式;


2.1 车辙点生成

2.1.1 预备知识:旋转平移

点旋转 和 坐标系旋转

image

点旋转

image

坐标系 绕坐标原点 旋转(逆时针)

image

坐标系旋转

image

2.1.2 Lateral Kinematics Model 横向运动学模型

Lateral Vehicle Dynamics

image

在书的第21页,pdf的第48页

https://ftp.idu.ac.id/wp-content/uploads/ebook/tdg/TERRAMECHANICS%20AND%20MOBILITY/epdf.pub_vehicle-dynamics-and-control-2nd-edition.pdf​ftp.idu.ac.id/wp-content/uploads/ebook/tdg/TERRAMECHANICS%20AND%20MOBILITY/epdf.pub_vehicle-dynamics-and-control-2nd-edition.pdf

image

在书的第22、23、24页,pdf的49、50、51

这个模型的关键点在于:

  1. image

image

image

神奇的假设

既然假设了 轨道运动image ,那么是圆周运动,这个是瞬时的,如果我们迭代计算,下一时刻是否还符合这个运动呢? 难以理解,只能实车看一下吧,反正是低速,我们需要在视频里打点,看低速恒方向盘转角,的轨迹,N多个瞬时时刻(dt)后是否能到那里。我没有试,但从录得视频来看,差不多。我们假定就是这样的理想轨迹,此时,就是转圈圈儿,预测轨迹就是转圈圈儿,好像很扯。

image

恒速恒角理想预测

这里需要说明的是,dt很小,即每次迭代间的delta_time取得非常小,如取1ms,3ms,大了的话,这个模型要失效。

image

dt (delta_time) 不宜过大,当然也有技巧方法,即小dt迭代次数多几次再画点

我们选取计算点在A点上,以车身方向为X轴,是一个相对坐标系,模型简化为

image

image

若取 O-XY,水平方向为X轴,垂直方向为Y轴

image

最后,以车机实际显示,建立坐标系,车辆始终被保持在车机显示的正中央,车身方向就是Y轴,垂直方向

这个模型大有用处,在AVM中,不仅用来生成车辙,也可用来做透明底盘

其实看到这里,就大概明朗了,用这个 ↑ 做迭代算就行了。

一言以蔽之:

image


更好用的是,直接用δ,计算轨道圆的方程,因为在车上的车机显示板上,车始终在屏幕正中央,这很关键。直接计算一个圆的方程,大大化简所有计算。

image

理想情况下,就是在一个圆上做圆周运动。

    // (X - X0)^2 + (Y - Y0)^2 = R^2
    // X^2 - 2*X0*X + X0^2 + (Y - Y0)^2 - R^2 = 0
    // a*x^2 + b*x + c = 0
    // a = 1, b = -2*x0, c = ..
    // delta = b^2 - 4ac
    // X = , Y = ;一元二次方程的求根公式:x=[-b±√(b²-4ac)]/2a
    // X0,Y0就是圆心,同心圆

2.1.3 点生成

复杂的方法:

pipeline

  1. 从运动学模型,计算出 选取点 的坐标平移dx,dy,和车身的角度偏转dθ,

  2. 从点旋转Rt和{dx,dy,dθ},计算出t(平移向量)

  3. 计算坐标轴旋转平移的R’t’,可以发现,t’实际等于t

  4. 通过上述算得的条件,迭代计算每一次更新后的坐标

需要注意的是,坐标系的选取的原点,以车中心为坐标系原点,

此原点既拿来(1)经过点旋转;和也拿来(2)经过坐标系旋转。一个点用两次。作为运动学模型和坐标系旋转之间的桥梁。

伪代码在下章节。

看代码吧,复杂的方法太蹩脚了,不值得讲。倒是点的视图间转换复杂的方法值得讲。

简单的方法:

简单的方法就是

image

image

极致的方法:

image用一元二次求根公式即可,

      double c = std::pow(circle_center_x, 2) +
                 std::pow(y - circle_center_y, 2) - std::pow(_R, 2);
      double delta = std::pow(b, 2) - 4. * a * c;
      float x;
      if (delta >= 0) {
        int coef = direction == 0 ? -1 : 1;
        x = float(-b + coef * std::sqrt(delta)) / 2.f;
      } else {
        continue;
      } 

还是代码说好说一点。

x根肯定要为正,负的不要。


2.2 点的视图间转换

两种方式:(1)费时费力的处理:通过remap warp;(2)简易的换算:直接算

image

鸟瞰图,到 去畸变图,存在一个Homography,就是perspective transform,透视变换

去畸变图,到 FEV鱼眼图,存在一个 去畸变模型的查找表。(我在这里卡了很久)

原因在于,去畸变图 反映射回 畸变图,这个 这个本身就不对的道理,我们不要拿图去反映射,

而是拿points of rut trajectory prediction车辙轨迹预测的点的坐标,通过一吨操作,在鱼眼图上去画,并不是拿画好后的BEV(AVM鸟瞰图)去做变换,想通这里,接下来就好办了。

image

加粗一下:

得到鸟瞰图到去畸变图的关系后,无论是接下来到:(a)去畸变扳正 正视图、(b)去畸变扳正更大视野正视图、(c)鱼眼图、(d)其他任意按需设计的视图, 都只需从去畸变图出发,去找对应的Homograpy单应矩阵,然后把点从去畸变投到相应视图上。

单应矩阵是什么?:

看过的,参考下吧:

单应性矩阵的理解及求解_机器视觉001的博客-CSDN博客_单应性矩阵

单应矩阵

北麓牧羊人:单应矩阵的推导与理解

利用逆透视变换获取车载图象的鸟瞰图_玉米味土豆片的博客-CSDN博客_opencv 鸟瞰图

白裳:单应性Homograph估计:从传统算法到深度学习

水木十三:opencv 单应性矩阵计算函数findHomography

findHomography()函数详解_奔跑的小木的博客-CSDN博客_findhomography

getPerspectiveTransform()与findHomography()与 HomographyBasedEstimator()

warpPerspective函数_普通网友的博客-CSDN博客_warpperspective

Rodrigues的推导: 罗德里格斯公式Rodrigues’Rotation Formula推导

2.2.1 鱼眼去畸变模型

我们先看看 去畸变,(由畸变图到去畸变), OpenCV文档:

https://docs.opencv.org/4.x/db/d58/group__calib3d__fisheye.html​docs.opencv.org/4.x/db/d58/group__calib3d__fisheye.html

image

去畸变模型

def calDistCoord(coords_undist, dist_coeffs, w_new, h_new):
    """
    对opencv去畸变模型的代码实现
    输入:  
        coords_undist,去畸变的坐标索引,相当于(无畸变)入射光线的坐标
        dist_coeffs,畸变参数
        w_new, h_new,去畸变图的大小
    """
    K = np.array([[fx,0,cx], [0,fy,cy], [0,0,1]]) # cx = w/2, cy = h/2
    K_new = np.array([[fx,0,w_new/2], [0,fy,h_new/2], [0,0,1]])
    # 用矩阵的方式来做
    coords_undist[:, :, 0] = (coords_undist[:, :, 0] - K_new[0, 2]) / K_new[0, 0]
    coords_undist[:, :, 1] = (coords_undist[:, :, 1] - K_new[1, 2]) / K_new[1, 1]
    r_undist = np.sqrt(point_undist[:, :, 0] ** 2 + coords_undist[:, :, 1] ** 2)[
        :, :, np.newaxis
    ] # 齐次坐标
    angle_undist = np.arctan(r_undist)  # / np.pi * 180
    r_dist = func(angle_undist, *dis_coeffs) # opencv里是θd,这里是r_dist,不用opencv的表示
    coords_dist = np.zeros_like(coords_undist)
    index = r_undist[:, :, 0] != 0 # r_undist[cy]cx]等于0,坐标原点,这个拟射到这个点的光线没折射
    # 通过矩阵的形式来做
    coords_dist[index] = r_dist[index] / r_undist[index] * point_undist[index]
    # 算完以后,还要  u = x'*fx + cx_new,  v = y'*fy + cy_new
    coords_dist[:, :, 0] = coords_dist[:, :, 0] * K[0, 0] + K[0, 2]
    coords_dist[:, :, 1] = coords_dist[:, :, 1] * K[1, 1] + K[1, 2]
    return coords_dist

    scale = 2
    point_undist = np.meshgrid(np.arange(640 * scale), np.arange(480 * scale))
    point_undist = np.stack(point_undist, axis=2).astype(np.float32) # h, w, 2 存的坐标
    img_size = (640 * scale, 480 * scale)  # W, H

    map = calDistCoord(point_undist, *img_size) # 这个是opencv的fisheye去畸变模型实现
    // 相机内参已知,畸变参数已知
    # map.shape = (960, 1280, 2)   (h, w, xy)

    # 举例
    x, y = 640, 480 # 原点,鱼眼相机小孔成像的直射点,此方向光线无畸变
    new_x = map[y, x, 0] # = 640   map_x(x,y) = map[:,:,0]
    new_y = map[y, x, 1] # = 480   map_y(x,y) = map[:,:,1]
    
    x, y = 640 - 640, 480 - 480
    new_x = map[0, 0, 0] # = 299.0378
    new_y = map[0, 0, 1] # = 224.27834

    x, y = 639 + 640, 479 + 480
    new_x = map[y, x, 0] # = 980.82605
    new_y = map[y, x, 1] # = 735.4862
 
    print(new_x, new_y) # 这个新坐标就是鱼眼图上的 车辙轨迹点
    # 直接在map里面找
    
    # 需要重点说明的是,这个↓是 鱼眼图去畸变,得到去畸变后的图,我们在remap前就停止操作
    # undist_img = cv2.remap(dist_img, map[:, :, 0], map[:, :, 1], cv2.INTER_LINEAR)
    # 不进行这一步 !↑
    # # remap: dst(x,y)=src(map_x(x,y),map_y(x,y))
    # # 题外话:
    # # remap: Applies a generic geometrical transformation to an image.
    # # remap真是个神奇的函数
    """ cv2.remap(src_img, map1, map2, interpolation)
    src_img:原始图像
    map1:目标图像中的每一个像素都对应于(映射于)原始图像的中的某个像素,
          将对应的原始图像的像素坐标的col存放在map1中。map1 的shape和目标图像一样。
    map2:目标图像中的每一个像素都对应于(映射于)原始图像的中的某个像素,
          将对应的原始图像的像素坐标的row存放在map2中。map2 的shape和目标图像一样。
    interpolation: 插值方式,不支持 INTER_AREA
    """
    # 明明就是 畸变模型,竟然通过remap去畸变了
    # https://github.com/opencv/opencv/blob/4.6.0/modules/imgproc/src/imgwarp.cpp#L1664

# meshgrid我一直搞得很迷糊,这里不记录下,不占用点篇幅:

opencv这个fisheye里写的模型,

image

Fisheye distortion

那应该是:

image

知乎 - 安全中心​www.close-range.com/docs/A_GENERIC_CAMERA_MODEL_AND_CALIBRATION_METHOD_Kannala-Brandt_pdf697.pdf

Juho Kannala and Sami Brandt. A generic camera model and calibration method for conventional, wide-angle, and fish-eye lenses.IEEE transactions on pattern analysis and machine intelligence, 28:1335–40, 09 2006.

用的这篇文章

image

OpenCV这样写。

再缕下思路: 通过 标定布的点(bev鸟瞰图视角) 与去畸变图上对应的点,

算得 鸟瞰图 ->到 去畸变图的 H。 把之前 鸟瞰图上的 轨迹预测点 通过H 算到 去畸变图上,

再算到 畸变图(鱼眼图)上,整个流程就走完了。

那其实可以直接 算 从鸟瞰图到 鱼眼图的映射吗? 没有。用去畸变图中转一下。

2.2.2 去畸变图扳正成正视图

这里一开始有个误区:

如果用AVM的流程直接调用,拿鱼眼图整张图变换到 扳正后的去畸变图,这里会使得车辙点被插值,这样要不得

image

要不得

image

正确的做法

复杂的方法是 算从去畸变到 扳正后的正视图的 map, map_x 和 map_y, 然后,输入BEV鸟瞰图下的坐标,得到 正视图的坐标。

这里需要算两个Homograpy单应性矩阵: H_bev2undist, H_undist2thisview,

,然后,用两个Homo 去计算map, 把map存为bin文件,用的时候直接调。麻烦啊,初始化占时间

简单的方法是

用两个Homo,把输入坐标直接用Homo做透视变换。方便,

复杂的方法是走的 AVM的标定流程,计算车辙时不需要。而且甚至最终解决方案是:AVM标定时把 中间结果Homograpy给存下来。 这样 省时省力。

在下章代码实现里,也说一下,怎么生成map的bin文件。

2.2.3 更广的视角

无非是套娃,再加多点变换

2.2.4 其他

同上


三、代码实现

伪了

3.1 点生成

复杂的方法:

伪代码

float model_point[2] = {200, 200}; // 举例
float dth=0, dx=0, dy=0; // theta, x, y 
rotate_center_init(...);
lateral_kinematics_model(model_point) // calculate: dth, dx, dy

void calc_trans_vector() {
  // use lateral kinematics model calculation
  //使用前轮模型,这里用前轮中心点坐标
  Point3D object_point = m_front_wheel_center; 
  // 这里object_point的坐标需要以车中心为坐标系为原点,需要换算一下
  // TODO (  )
  // add the predictions from kinematics model
  Point3D predicted_pt;
  predicted_pt.x = object_point.x + delta_x;
  predicted_pt.y = object_point.y + delta_y;

  Point3D rotated_pt;
  rotate(rotated_pt, object_point);
  // get translation vector for wheel center
  translation_vec[0] = predicted_pt.x - rotated_pt.x;
  translation_vec[1] = predicted_pt.y - rotated_pt.y;
} // 这个是运用运动学模型计算车辙点的关键一招


float T[2] = {上↑面}; // 平移向量t'等于t
// R1为逆时针点旋转,R2为顺时针点旋转,R3为逆时针坐标系旋转,R4为顺时针坐标旋转
// float R1[2][2], R2[2][2], R3[2][2], R4[2][2];
// 计算 R1,R2,R3,R4, 用delta_theta; 
get_rotate_matrix(...); // TODO(  )
// 数值上,R3等于R2,R4等于R1
for (int i=0; i < iteration; i++) { // 迭代更新次数
  //需要预测的点的个数集合:pts
  // 移动点
  Rotate(R1, pts);
  Translate(pts, T);
  // 旋转中心更新
  rotate_center_update(pts);
  // 移动坐标系
  Rotate(R3, pts);
  Translate(pts, T);
  // 保存结果
  save_projectory_prediction(iter, pts); // 保存结果时,需要反算点
}
// 运动学模型用来计算完Rt后,就可以Rt来一直迭代计算了
// /* x_r, y_r = rotate(R, point); 然后 t_x = dx - x_r; t_y = dy - y_r; 就是这样   */

// 坐标恢复
void coordinate_recover(...) {
  for (int i=iter; i >= 0; i--) {
    coordinate_system_recover(); // 顺时针Rt
    rotate_center_recover(...); // 加上 减去的中心点坐标
  }
  rotate_center_recover(...); // 图像坐标系上 加上 减去的中心点坐标
} 

void save_trajectory_point(int iter) {
  coordinate_recover(iter, pts);
  prediction_pts_result.push_back(pts); // 保存结果
}

void lateral_kinematics_model() {
    // 用前/后轮模型都行,因为车辆上传感器可以获得,如下:
    // 前后轮4个轮子的速度,前轮相对于车身的转角
    // front_wheel_speed_left, front_wheel_speed_right
    // rear_wheel_speed_left, rear_wheel_speed_right
    // angle_for_front_wheel
    // 我们取前轮两个轮子速度的平均值,作为单车模型的前轮速度,后轮同理。
    // 以下用前轮举例
    // 我们选取前轮作为模型的分析点,此时,有,如下模型公式
    delta_theta = speed * sin(angle - M_PI / 2) / wheelbase * delta_time;
    delta_x = speed * cos(angle + delta_theta) * delta_time;
    delta_y = speed * sin(angle + delta_theta) * delta_time;
    // 需要说明的是,angle换算成以水平x轴为起点旋转到当前方向的度数,
    // 就是,相对于X轴的夹角。在模型里,是个相对的夹角,需要减去90度。
    // delta_time 任取,取小点,比如 5ms,然后迭代算。
}

简单的方法:

伪代码,示意即可

void trajectory_update() {
  // 每帧 结果清零 TODO (  )
  // 每帧 模型的累加值清零
  delta_theta = 0.f, delta_x = 0.f, delta_y = 0.f; 

  delta_time = _point_sparse_ratio_avm * delta_time_ori; // 系数超参数
  int iter_num = int(delta_time / delta_time_ori);

  // 要计算的车坐标点:4个轮胎,和车体边缘(车后视镜点)
  std::vector<Point3D> points(m_vehicle_coords);
  std::vector<Point3D> transformed_pts(m_vehicle_coords);
  // 坐标中心换算,以车中心为原点
  transform_coordinate_system(...);

  // 这个 m_num_points_per_line 就是要预测的点的个数,预先给出
  // 开始迭代
  for (int i = 1; i <= num_points_per_line; i++) {
    if (which_view == WhichView::kWide) { 
      // 如果是 去畸变 扳正后的正视图,这里是稀疏化点
      iter_num = adjust_points_gap_ratio(i, delta_time);
    }
    // 这里就是迭代 N 次,一步到位,而不是 用大的delta_time(会error)
    for (int j = 0; j < iter_num; j++) {
      lateral_kinematics_model(delta_time_ori);
    }
    rotation_matrix(...); // 旋转矩阵
    trans_vector(...);    // 平移向量
    // points清零,并用transformed_pts赋值 TODO (  )
    for (int j = 0; j < 要计算的坐标点个数; j++) {
      // 要计算的车坐标点:4个轮胎,和车体边缘(车后视镜点)
      // R t
      rotate(points[j], points[j]);
      points[j].x += translation_vec[0];
      points[j].y += translation_vec[1];
      // 从车中心为原点 换算回图像坐标系
      transform_coordinate_system_invert(...);
    }
    // 在这里保存点
  }
}

极致的方法:

同心圆的代码就不贴了,实现起来还是很简单的。 就是要思路简单!实现也简单!


另外,关于刻度线 1米2米3米这种,用同心圆的方法计算即可。精确解

3.2 点的视图间转换

复杂的方法:

示意代码,伪代码
  cv::Mat map_x(h, w, CV_32F);
  cv::Mat map_y(h, w, CV_32F);
  cv::Vec2f xy1, xy2;
  int x_label = 0, y_label = 0;
  for (int i = y_start; i < y_end; i++) {
    float *data_x = map_x.ptr<float>(y_label);
    float *data_y = map_y.ptr<float>(y_label);
    for (int j = x_start; j < x_end; j++) {
      矩阵乘法(H_bev_to_undistorted, j - x_start, i - y_start, xy1);
      矩阵乘法(H_undistorted_to_thisview, xy1[0], xy1[1], xy2);
      data_x[x_label] = xy2[0] - dw_bev_to_thisview;
      data_y[x_label] = xy2[1] - dh_bev_to_thisview;
      x_label++;
    }
    x_label = 0;
    y_label++;
  } // 得到bev to thisview的map:data_x, data_y
  // 然后把 data_x, data_y 保存为bin

简单的方法:

H_bev_to_undistorted 直接和原始坐标coord0相乘,得到coord1,

然后 H_undistorted_to_thisview和coord1相乘,得到coord2,

coord2即为所求。

当在复用AVM标定流程的时候,直接调Homograpy即可,算都无需算。

而怎么计算 Homograpy单应性矩阵 这个,超出本文范围。如果掌握,请参看上面2.2给出的参考的链接

一些细节问题,还得实际中去慢慢踩坑,解决

3.3 点的稀疏化

在AVM的鸟瞰图BEV上,因为可以把点预测为均匀分布,而在 去畸变后的扳正后的图上,就难以做到均匀分布了。因为是拿BEV上的均匀分布的点 做Homograpy 透视变换 过去的,目前没对这个深究,根据肉眼观测,手动调节 iter_num 的大小,分段调节,比如前1个点,一次走多点,第2个点到第20个点一次走少点,远处的第100个点以上,再一次走多点,等等,超参数调节,把 透视变换后的不均匀 简单的处理了下,,这样使运算量较少的同时,使得 把点进行点与点之间连线,显得不太突兀,更平滑一点。当然,更好的方式,是拟合一个曲线,使画出来的点连线起来就是点密集分布平滑的线,因为可以指定Y坐标,逐渐增大,进行画点。

车辙轨迹预测,比起AVM整套来,还是太简单了,AVM流程一套弄下来,是永远的神.

以上写于2022年10月


void RutModel::rotate(Point3D &rotated_pt, Point3D origin_pt) {
  float x = origin_pt.x;
  float y = origin_pt.y;
  rotated_pt.x = rotation_mat[0][0] * x + rotation_mat[0][1] * y;
  rotated_pt.y = rotation_mat[1][0] * x + rotation_mat[1][1] * y;
}

void RutModel::lateral_kinematics_model(float delta_time) {
  // rear wheel center mode
  delta_theta +=
      speed * tan(angle - m_pi / 2.f) / m_wheelbase_len * delta_time;
  float r = m_wheelbase_len / tan(angle - m_pi / 2.f);
  delta_x += (1.f - cos(delta_theta)) * r;
  delta_y += sin(delta_theta) * r;
}

void RutModel::get_rotation_matrix() {
  rotation_mat[0][0] = cos(delta_theta);
  rotation_mat[0][1] = -1 * sin(delta_theta);
  rotation_mat[1][0] = sin(delta_theta);
  rotation_mat[1][1] = cos(delta_theta);
}

void RutModel::calc_trans_vector() {

  Point3D object_point = m_rear_wheel_center;
  object_point.x -= m_vehicle_center.x;
  object_point.y -= m_vehicle_center.y;
  object_point.y *= -1.f;

  Point3D predicted_pt;
  predicted_pt.x = object_point.x + delta_x;
  predicted_pt.y = object_point.y + delta_y;

  Point3D rotated_pt;
  rotate(rotated_pt, object_point);

  translation_vec[0] = predicted_pt.x - rotated_pt.x;
  translation_vec[1] = predicted_pt.y - rotated_pt.y;
}

// 部分实现
 ...
    get_rotation_matrix();
    calc_trans_vector();

    points.clear();
    points.assign(transformed_pts.begin(), transformed_pts.end());
    for (int j = 0; j < num_coords; j++) {
      if (filter_flag[j]) {
        points[j].x = m_invalid_value;
        points[j].y = m_invalid_value;
        continue;
      }
      rotate(points[j], points[j]);
      points[j].x += translation_vec[0];
      points[j].y += translation_vec[1];
      points[j].y *= -1;
      points[j].x += m_vehicle_center.x;
      points[j].y += m_vehicle_center.y;
      boundary_x[j] = points[j].x;
      boundary_y[j] = points[j].y;

    }
    trajectory_points.push_back(points);
  }
  • 19
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: 很抱歉,我无法提供具体的沥青路面病害统计数据,因为我的知识截止日期为2021年,并且并未收到更新的数据。但是,可以提供相关的概念解释和资料。 沥青路面病害是指在道路上出现的一系列问题,如裂缝,坑洼,沉降等。这些问题不仅影响道路的安全和使用寿命,还影响行车的舒适度和驾驶者的安全。为了评估道路状况,统计数据是必要的。这些数据通常由道路管理部门收集和统计,并可以用于规划维护和修复工作。 ### 回答2: 沥青路面病害统计数据是指对道路上产生的病害进行统计和分析的数据。沥青路面病害是指在使用过程中由于自然因素和人为因素的影响而导致路面损坏和破坏的问题,包括路面龟裂、车辙、坑洞等。 沥青路面病害统计数据的收集与分析对于道路的维护和改进非常重要。通过对各种病害的种类、发生位置和发生率的统计,可以了解病害的分布情况、严重程度和影响范围,为道路养护部门提供科学依据,合理安排资源和实施维修措施。同时,通过持续的统计工作还可以监测路面状况的变化趋势,及时发现和预防潜在的问题,提高道路的安全性和舒适度。 沥青路面病害统计数据还可以反映路面质量和使用情况。不同类型的病害在不同的道路上发生的原因和频率可能有所不同,统计数据可以帮助我们了解路面材料的耐久性、设计施工的质量和交通负荷对路面的影响程度。通过分析这些数据,可以制定合理的设计标准和改进方案,提高路面的使用寿命和质量。 最后,沥青路面病害统计数据在科研和学术研究领域也有重要作用。通过对大量的路面病害统计数据的分析,可以揭示病害形成的机理、发展规律和防治方法,为相关领域的研究提供数据支持和理论指导。 综上所述,沥青路面病害统计数据对于道路维护和改进至关重要。通过这些数据的收集和分析,可以提高路面的安全性和舒适度,延长路面使用寿命,为科研和学术研究提供依据。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值