©原创作者 | 朱林
01 介绍
一个普通的知识图谱只拥有某一时刻的静态事实,常见表示为图的形式,如图1所示,包含了实体e(圆)及其关系r(箭头)。
图1 知识图谱示意图
目前快速增长的数据往往表现出复杂的时间动态特性,可以描述为时序知识图谱(Temporal Knowledge Graphs, TKG),其是在知识图谱的基础上加上了时间信息t。
TKG已经广泛运用于许多不同的领域,具有代表性的TKG数据集包括全球事件、语言和语气数据库(Global Database of Events, Language, and Tone, GDELT)和综合危机预警系统(Integrated Crisis Early Warning System, ICEWS)等等。
图2展示了ICEWS系统的一个外交活动记录子图。
图2 ICEWS外交活动记录子图
TKG的预测问题是在已知过去的历史线索信息(实体及关系在时间上的序列)下推断未来某一潜在事实或事件。
那人类是如何预测未来事件的呢?根据心理学著名的双重过程理论,人类首先是搜索海量记忆,直观地找到一些相关的历史信息(即线索)。
图3 受人类认知启发的推理过程示意图关系
如图3左侧所示,人们需要根据之前线索预测2020年12月23日COVID-19在哪里出现新病例,可以描述为回答查询: (COVID-19, New medical case occur, ?, 2020-12-23)中的?。
其中,找到至关重要的线索有:
1)与查询有相同关系的一跳(1-hop)路径(去除时间信息后直接关联实体和关系)。例如(COVID-19,New medical case occur, Shop);
2)与查询有不同关系的一跳路径ÿ