论文浅尝 | 时序与因果关系联合推理

本文提出了一种基于ILP模型的时序与因果关系联合推理框架,包含时序对称性、传递性约束,并在TB-Dense和自建数据集上进行了实验,证明了该框架能提升任务性能。
摘要由CSDN通过智能技术生成

论文笔记整理:李昊轩,南京大学硕士,研究方向为知识图谱、自然语言处理。


640?wx_fmt=png

来源:ACL2018

链接:https://www.aclweb.org/anthology/P18-1212


动机

理解事件之间的时间和因果关系是一项基本的自然语言理解任务。由于原因一定先于结果发生,因此时序关系与因果关系之间存在取值上的联系。在已有工作中较少联合关注这两种关系。本文提出了一种基于整数线性规划(ILP)模型的联合推理框架,通过约束限制了结果中时序和因果的一致性。


贡献点

1. 提出了基于 ILP 模型的时序与因果关系的联合推理框架,包含了以下约束条件:(1)原因必须在时序上先于其结果;(2)时序对称性约束;(3)时序传递性约束

2.  开发了一个用于联合标注数据集。本文通过在 EventCausality 数据集的基础上增加标注时序关系的方法构建了该数据集。


时序和因果联合推理方法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值