马氏链,Metropolis-Hastings采样与Gibbs采样的理解(附有python仿真)

本文介绍了马氏链的基本原理和采样方法,包括Metropolis-Hastings采样和Gibbs采样的概念及Python实现。通过这两种方法,可以生成目标分布的随机样本,尤其适用于高维分布的采样。文中还展示了采样结果的图形展示,帮助读者直观理解采样效果。
摘要由CSDN通过智能技术生成

马氏链

原理

在这里插入图片描述

采样方法

所谓的采样方法,主要就是利用了马氏链的性质

π n ( x ) \pi_n(x) πn(x)为一个离散的概率分布
π n ( x ) = [ π n ( 1 ) , π n ( 2 ) , . . . , π n ( m ) ] \pi_n(x)=[\pi_n(1),\pi_n(2),...,\pi_n(m)] πn(x)=[πn(1),πn(2),...,πn(m)]
当马氏链收敛至平稳分布时(假设第n次转移时收敛), π n ( x ) , π n + 1 ( x ) , π n + 2 ( x ) , . . . . \pi_n(x),\pi_{n+1}(x),\pi_{n+2}(x),.... πn(x),πn+1(x),πn+2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值