GPU性能衡量指标

本文探讨了GPU性能的两个关键衡量指标——FLOPS(每秒浮点运算量)和Occupancy(占有率)。FLOPS用于评估GPU的计算能力,而Occupancy则关注CUDA硬件的执行效率。低Occupancy可能影响性能,主要受寄存器资源、共享内存资源和SM并发限制等因素影响。优化这些因素有助于提升GPU的计算效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

GPU加速优化之前,我们先看看GPU的性能衡量。

  1. FLOPS
  2. Occupancy

FLOPS(Floating-point-operations-per-second)

每秒浮点运算量,是衡量GPU硬件计算能力的指标。

 

Occupancy

占有率,每个SM的活动线程束(possible active warps)数量与实际的活动线程束(active warps)数量的比值。它是衡量CUDA硬件执行效率的指标。CUDA上的线程指令是串行执行的。因此,在某些warp被暂停或者阻塞的时候,启动另外的warp来保持硬件的busy,对于提升硬件执行效率来说非常重要。

尽管更高的占有率并不总是意味着更高的效率,但是低的占有率却会影响掩盖内存延迟的能力,进而引起效率的退化。当占有率达到50%后,我们不会再寻求通过提高占有率来提升效率。

影响Occupancy的因素有3个:

寄存器资源(register availability, thread私有)

Register 保存了线程中的局部变量,具有最低的存取延迟。但是能分配给SM上每个block以及每个thread的寄

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值