Trajectory planning for automatic machines and robots
Trajectory Planning 轨迹规划
(不进行全文翻译)
这本书主要对轨迹规划的问题进行讨论。
这里只考虑电动驱动器,它们的运动定义于具有一个或多个执行器的自动机器的实时控制。
读这本书需要一些关于机器及其驱动系统的具体知识,比如基本的运动模型(直接和逆模型)和系统的动态模型(为了规划适当的运动规律,允许在适当的载荷和机械结构上执行所需的运动)。
此外,对于计划运动的实时执行,有必要细化适当的位置/速度控制算法,以优化系统的性能,并补偿运动过程中的干扰和误差,如驱动系统的饱和。
有几种技术可用于规划所需的运动,每一种技术都具有必须被众所周知和理解的特殊特征。
在这本书中,会详细地说明和分析了最重要的和最普遍采用的轨迹规划技术,并考虑到了上述问题。
1.1 轨迹规划概述
基本上,轨迹规划问题在于寻找属于不同领域的两个元素之间的关系:时间和空间。因此,轨迹通常被表示为时间的参数函数,它会立即提供相应的所需位置。
显然,在定义了这个功能之后,还必须考虑与其实现相关的其他方面,如时间离散化(自动机器由数字控制系统控制)、驱动系统的饱和度、在负载上引起的振动等等。
如图
(
F
i
g
.
1.1
)
(Fig.1.1)
(Fig.1.1) 所示,不同类别的轨迹之间的主要区别在于,它们可以是一维的或多维的。
在这本书中,首先考虑了一维轨迹的设计。然后,讨论了它们的协调/同步问题,最后考虑了三维空间中运动的规划。
本书中报告的技术,无论是一维和多维轨迹,也是根据所需的运动是通过假设初始点和最终点(点轨迹)或考虑一组中间通过点必须适当的插值/近似(多点轨迹)来定义的。
在前一种情况下,通过连接几个点到点轨迹(point-to-point trajectory)来获得复杂运动,它们通过考虑速度、加速度等的初始和最终边界条件以及其最大值的约束条件进行单独优化。
相反地,在多点轨迹的情况下),通过指定中间点,可以定义任意复杂的运动,轨迹被发现是一个全局优化问题的解,该问题取决于每个通过点和整体轮廓的条件。
此外,可以根据给定的通过点采用不同的标准来定义运动轮廓,而这些通过点不一定被轨迹跨越。特别是,可以区分出两种方法的类型:
- 插值:曲线穿过某些时间值的给定点, F i g . 1.2 ( a ) Fig.1.2(a) Fig.1.2(a)。
- 近似:曲线不完全通过点,但可通过指定规定的公差来分配误差, F i g . 1.2 ( b ) Fig.1.2(b) Fig.1.2(b)。
后一种方法可以是有用的,特别是在多维轨迹中,以牺牲精度为代价来,降低沿曲线的速度/加速度值是可取的。
1.2 一维轨迹
目前高速自动机器的设计,其驱动系统主要基于电驱动,一般涉及使用分布在机器上的几种执行器,以及相对简单的机构。
电子凸轮和电子齿轮被用于在需要的地方生成运动(motion),代替一个或几个执行器和复杂的动力(kinematic)链。这样,可以获得更灵活的机器,能够满足市场所需的不同生产需求。
在这种情况下,轨迹规划问题被认为是[3]越来越重要的,因为一旦定义了位移(displacement)及其持续时间(duration),从初始点到最后点的运动模式(modality)的选择对执行器的大小、在结构上产生的效力和指定运动的跟踪能力(跟踪误差)具有重要影响。
因此,有必要仔细考虑可与特定系统(驱动和载荷)一起使用的不同类型的点对点轨迹。
事实上,对于给定的边界条件(初始和最终位置、速度、加速度等)以及持续时间,轨迹的类型,都会对中间点的速度和加速度的峰值,以及结果剖面(result profile)的光谱内容(spectral content)有很大的影响。
因此,在书的第一部分中,描述了在工业实践中使用的最常见的轨迹族,并提供了它们的解析表达式。然后,通过考虑到频率方面和整个机器的可实现的性能,对这些轨迹进行了分析和比较。
1.3 机械凸轮与电动凸轮(说明电动的好处)
设计凸轮以获得所需运动的必要性已经逐渐被规划电动机的适当轨迹的必要性所取代。
不同的运动轴仅通过将从连接到一个主来实现(协调在机械级执行),而对于电子凸轮,设计不同执行器的运动剖面时必须考虑问题(如何同步在软件级别执行)
一个常见的解决方案是通过定义一个主运动来获得电机的同步,这个主运动可以是虚拟的(由软件生成的),也可以是真实的(机器的执行器的位置),然后对于其他轴来说,通过使用这个主位置作为“时间”。
1.4 多维轨迹
正确地说,术语轨迹表示三维空间中的一条路径。例如,《美氏韦氏词典》中将轨迹定义为“物体在空间中描述的曲线”[10]。
在多个电机组成的机器的情况下,每个电机都可以独立地编程和控制(在联合空间中进行控制),但许多应用程序需要不同运动轴之间的协调,以便在机器的操作空间中获得所需的多维轨迹。在三维空间中执行任务,在这些应用程序中,需要指定:
- 要遵循的几何路径 (geometric path) p = p ( u ) p=p(u) p=p(u) ,还包括沿曲线的方向。
- 必须跟踪几何路径的模态,即运动定律 (motion laws) u = u ( t ) u=u(t) u=u(t)。
末端执行器后面的曲线必须根据任务所施加的约束来设计 ,还需要加上来自于其他约束对于运动定律的确定。从几何路径和运动律的组成中,得到了完整的轨迹
p
^
(
t
)
=
p
(
u
(
t
)
)
\hat{p}(t)=p(u(t))
p^(t)=p(u(t))
一旦指定了所需的运动,就可以使用该机器的逆运动学模型来获得在产生和控制该运动的其中的致动(关节)空间中的相应轨迹。
1.5 本书内容结构(简单略过)
Part 1 基本运动轮廓
Part 2 轨迹细化和分析
Part 3 操作空间中的轨迹
四个附录,详细介绍了一维轨迹计算问题的一些方面,
- 即高效多项式评估、矩阵反演等(附录A)
- B-spline、Nurbs和贝塞尔曲线定义和特性(附录B)
- 三维空间方向定义工具(附录C)
- 模拟和数字信号的光谱分析(附录D)
1.6 记号表(不翻)