推荐系统无显式ID特征文献综述 - 学习资料汇总与项目介绍

Recommendation-Systems-without-Explicit-ID-Features-A-Literature-Review

推荐系统无显式ID特征文献综述 - 学习资料汇总与项目介绍

推荐系统是当今互联网应用中不可或缺的重要组成部分,而传统的基于ID特征的推荐方法正面临着诸多挑战。本文将为大家介绍一个重要的GitHub项目 - Recommendation-Systems-without-Explicit-ID-Features-A-Literature-Review,该项目汇总了推荐系统无显式ID特征相关的重要文献、数据集和研究方向,为该领域的学习者和研究者提供全面的资源导航。

项目概述

该项目由西湖大学的研究团队维护,旨在探讨以下几个关键问题:

  1. 推荐系统是否可以拥有类似NLP和CV领域的基础模型?
  2. ID嵌入对推荐模型是否必要,能否被替代或废弃?
  3. 推荐系统是否会从匹配范式转向生成范式?
  4. 如何利用大规模语言模型(LLM)来增强推荐系统?
  5. 多模态推荐系统的未来发展方向如何?

主要研究方向

项目涵盖了以下几个主要研究方向:

  1. 大规模语言模型在推荐系统中的应用(LLM4Rec)
  2. 多模态推荐系统
  3. 基础和可迁移推荐模型
  4. 通用、一体化的用户表示学习
  5. 终身通用用户表示学习
  6. 生成式推荐系统

重要资源

  1. 数据集:

    • NineRec: 用于评估可迁移推荐的基准数据集套件
    • TenRec: 大规模多用途基准推荐系统数据集
    • PixelRec: 用于基于原始像素的推荐系统基准测试的图像数据集
    • MicroLens: 大规模内容驱动的微视频推荐数据集
  2. 综述论文:

    • 《A Survey on Large Language Models for Recommendation》
    • 《How Can Recommender Systems Benefit from Large Language Models: A Survey》
    • 《Foundation Models for Recommender Systems: A Survey and New Perspectives》
  3. 重要研究方向:

    • LLM在推荐系统中的扩展、调优和冻结应用
    • 多模态推荐系统的最新进展
    • 基础和可迁移推荐模型的探索
    • 通用用户表示学习的新方法

学习建议

  1. 从项目提供的综述论文入手,了解推荐系统无显式ID特征研究的最新进展和挑战。

  2. 根据个人兴趣和背景,选择一个或多个研究方向深入学习,如LLM4Rec、多模态推荐系统等。

  3. 利用项目提供的数据集进行实践,尝试复现一些经典模型或设计新的算法。

  4. 关注项目的更新,及时了解该领域的最新进展和热点问题。

  5. 参与项目的讨论,与其他研究者交流,共同推动该领域的发展。

结语

推荐系统无显式ID特征是一个充满挑战和机遇的研究方向。通过本项目提供的丰富资源,相信每一位学习者和研究者都能在这个领域有所收获和突破。让我们共同期待推荐系统的下一个重大突破!

项目链接:www.dongaigc.com/a/literature-review-on-recommendation-systems

https://www.dongaigc.com/a/literature-review-on-recommendation-systems

www.dongaigc.com/p/westlake-repl/Recommendation-Systems-without-Explicit-ID-Features-A-Literature-Review

https://www.dongaigc.com/p/westlake-repl/Recommendation-Systems-without-Explicit-ID-Features-A-Literature-Review

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值