推荐系统无显式ID特征文献综述 - 学习资料汇总与项目介绍
推荐系统是当今互联网应用中不可或缺的重要组成部分,而传统的基于ID特征的推荐方法正面临着诸多挑战。本文将为大家介绍一个重要的GitHub项目 - Recommendation-Systems-without-Explicit-ID-Features-A-Literature-Review,该项目汇总了推荐系统无显式ID特征相关的重要文献、数据集和研究方向,为该领域的学习者和研究者提供全面的资源导航。
项目概述
该项目由西湖大学的研究团队维护,旨在探讨以下几个关键问题:
- 推荐系统是否可以拥有类似NLP和CV领域的基础模型?
- ID嵌入对推荐模型是否必要,能否被替代或废弃?
- 推荐系统是否会从匹配范式转向生成范式?
- 如何利用大规模语言模型(LLM)来增强推荐系统?
- 多模态推荐系统的未来发展方向如何?
主要研究方向
项目涵盖了以下几个主要研究方向:
- 大规模语言模型在推荐系统中的应用(LLM4Rec)
- 多模态推荐系统
- 基础和可迁移推荐模型
- 通用、一体化的用户表示学习
- 终身通用用户表示学习
- 生成式推荐系统
重要资源
-
数据集:
- NineRec: 用于评估可迁移推荐的基准数据集套件
- TenRec: 大规模多用途基准推荐系统数据集
- PixelRec: 用于基于原始像素的推荐系统基准测试的图像数据集
- MicroLens: 大规模内容驱动的微视频推荐数据集
-
综述论文:
- 《A Survey on Large Language Models for Recommendation》
- 《How Can Recommender Systems Benefit from Large Language Models: A Survey》
- 《Foundation Models for Recommender Systems: A Survey and New Perspectives》
-
重要研究方向:
- LLM在推荐系统中的扩展、调优和冻结应用
- 多模态推荐系统的最新进展
- 基础和可迁移推荐模型的探索
- 通用用户表示学习的新方法
学习建议
-
从项目提供的综述论文入手,了解推荐系统无显式ID特征研究的最新进展和挑战。
-
根据个人兴趣和背景,选择一个或多个研究方向深入学习,如LLM4Rec、多模态推荐系统等。
-
利用项目提供的数据集进行实践,尝试复现一些经典模型或设计新的算法。
-
关注项目的更新,及时了解该领域的最新进展和热点问题。
-
参与项目的讨论,与其他研究者交流,共同推动该领域的发展。
结语
推荐系统无显式ID特征是一个充满挑战和机遇的研究方向。通过本项目提供的丰富资源,相信每一位学习者和研究者都能在这个领域有所收获和突破。让我们共同期待推荐系统的下一个重大突破!
项目链接:www.dongaigc.com/a/literature-review-on-recommendation-systems
https://www.dongaigc.com/a/literature-review-on-recommendation-systems
www.dongaigc.com/p/westlake-repl/Recommendation-Systems-without-Explicit-ID-Features-A-Literature-Review
https://www.dongaigc.com/p/westlake-repl/Recommendation-Systems-without-Explicit-ID-Features-A-Literature-Review