摘 要 深度学习在2维图像等结构化数据处理中表现出了优越性能,对非结构化的点云数据分析处理的潜力已经成为计算机图形学的重要研究方向,并在机器人、自动驾驶、虚拟及增强现实等领域取得一定进展.通过回顾近年来3维点云处理任务的主要研究问题,围绕深度学习在3维点云形状分析、结构提取、检测和修复等方向的应用,总结整理了典型算法.介绍了点云拓扑结构的提取方法,然后对比分析了变换、分类分割、检测跟踪、姿态估计等方向的以构建神经网络为主要研究方法的进展.最后,总结常用的3维点云公开数据集,分析对比了各类方法的特点与评价指标,指出其优势与不足,并从不同角度对基于深度学习的方法处理点云数据所面临的挑战与发展方向进行了讨论.
关键词 点云;深度学习;重建;分类分割;检测追踪;姿态估计
随着3维传感器的迅速发展,3维数据变得无处不在,利用深度学习方法对这类数据进行语义理解和分析变得越来越重要.
不同3维数据(体素、网格等)表示下,深度学习的方法不尽相同,但这些方法应用于点云中都有一定的局限性,具体表现为:体素化方法会受到分辨率的限制;转换为2维图像的方法在形状分类和检索任务上取得了优越性能,但将其扩展到场景理解或其他3维任务(如姿态估计)有一定的困难;光谱卷积神经网络限制在流形网格;基于特征的深度神经网络会受到所提取特征表示能力的限制[1