Scale AI 的崛起与阴影:一个价值数十亿美元的科技帝国
在美国加利福尼亚州旧金山的核心地带,一家公司——Scale AI——正在人工智能行业掀起波澜。凭借来自 Accel、Founders Fund 和 Index Ventures 等顶级风险投资公司的 6 亿美元融资,Scale AI 的估值已飙升至 70 亿美元。这一成功让其联合创始人兼首席执行官 Alexander Wang 在 2021 年仅 24 岁时 成为 最年轻的白手起家亿万富翁。
但 Scale AI 究竟是做什么的?它又是如何成为科技界最炙手可热的初创公司之一的?
什么是 Scale AI?
从本质上讲,Scale AI 提供 数据标注和注释 服务,帮助企业训练 人工智能(AI) 和 机器学习 模型。如今的 AI 并不会“独立思考”——它仅根据训练数据生成输出。因此,高质量的训练数据是 AI 发展的基石,而这正是 Scale AI 的核心业务。
该公司因其在 自动驾驶汽车公司、政府机构和大型企业 方面的工作而备受关注。然而,它的成功之路并非一帆风顺,快速崛起的背后也隐藏着许多人不知道的阴暗面。
起源:从简单的 API 到 AI 巨头
要理解 Scale AI 的发展历程,我们需要回到 2016 年。公司由 Lucy Guo 和 Alexander Wang 两位年轻的天才创立。
- Lucy Guo 在 21 岁时 从卡内基梅隆大学辍学,并获得了 Thiel Fellowship(由亿万富翁 Peter Thiel 设立的基金,资助年轻企业家创业,而不是继续学业)。在创办 Scale AI 之前,她已在 Meta(Facebook)、Quora 和 Snapchat 等公司工作过。
- Alexander Wang 在 19 岁时从麻省理工学院(MIT)辍学 创办了公司。高中时期,他就在 Quora 担任基础架构工程师。
最初,Scale AI 并不专注于人工智能。它的前身是 Scale API,一个提供 按需人工服务 的平台,帮助企业完成内容审核、数据提取、预约安排等任务。企业只需一行代码,就能调用人工劳动力完成算法无法处理的任务。
但不久之后,Scale AI 在自动驾驶行业发现了巨大商机。这些公司拥有大量 行车视频数据,但缺少足够的人工来 审核和标注数据。Scale AI 填补了这一空白,迅速赢得了 丰田(Toyota)、本田(Honda)和 Cruise 等主要客户。
然而,Scale AI 的发展并非一帆风顺。到 2018 年,Lucy Guo 和 Alexander Wang 因公司发展方向出现严重分歧,最终 Lucy 选择离开,后来创办了自己的风险投资公司和软件初创公司 Passes,专注于创作者经济。
Lucy 离开后,Scale AI 进行了品牌重塑,去掉了“API”一词,并将业务完全转向 AI 训练数据。
Scale AI 如今如何运作?
Scale AI 已发展成为一家 强大的 AI 数据基础设施公司,提供四大核心产品:
- Scale Data Engine —— 帮助机器学习团队收集、整理和标注训练数据。
- Scale Generative AI Platform —— 一个企业级工具,用于测试、对比和优化 OpenAI 的 GPT、Anthropic 的 Claude 等 AI 模型。
- Scale Donovan —— 主要面向国防领域,帮助 美国军方分析情报报告、卫星图像和国防数据,做出更明智的决策。
- Scale Spellbook —— 一个开发者工具,支持基于 大语言模型(LLM) 创建和部署 AI 应用。
目前,公司雇佣了 600 多名员工,客户包括 Meta、微软(Microsoft)、Instacart、丰田(Toyota)、美国陆军和空军。到 2022 年,Scale AI 的年收入已达 2.5 亿美元,在众多仍在亏损的 AI 初创公司中脱颖而出。
然而,Scale AI 的成功故事并非完全光鲜亮丽。
Scale AI 的阴暗面
随着 Scale AI 的成长,公司面临的 最大挑战 之一是:如何扩大人工标注团队。
在美国雇佣大量员工成本过高,为降低开支,Scale AI 通过名为 RemoteTasks 的平台 将大量工作外包到东南亚和非洲。
- Scale AI 在这些地区设立培训中心,雇佣了 超过 24 万名数据标注员。
- 这种做法确实提高了 利润率,但代价是 恶劣的工作环境和极低的薪资。
- 一些工人 每小时收入不足 1 美元,甚至被迫加班。
为了 避免外界关注,Scale AI 极力隐藏自己与 RemoteTasks 的关系,避免客户和竞争对手的审查。
此外,Scale AI 与美国政府的关系日益紧密。随着 国防和军事合同 的增加,公司受到更多监管,无法继续使用外国劳工。这迫使 Scale AI 在美国建立办公室,并雇佣本土标注员,但这又带来了更高的成本和运营压力。
AI 的未来与 Scale AI 的角色
Alexander Wang 坚信两件事:
- AI 是一股积极的力量,能够改善行业和日常生活。
- 美国必须保持 AI 领导地位,尤其是在中国和俄罗斯等科技竞争对手面前。
然而,AI 的未来也伴随着 巨大的伦理和生存风险。如果 AI 继续快速发展,它是否会达到不再需要人类训练的地步?
科技领袖 埃隆·马斯克(Elon Musk)、比尔·盖茨(Bill Gates)和 OpenAI CEO Sam Altman 都曾警告,AI 可能成为全球性威胁,甚至与大流行病或核战争一样危险。
目前,Scale AI 仍依赖人类工人来确保 AI 符合道德和价值观。但如果 AI 未来能自行训练和优化,那么 人类在 AI 发展中的角色会变成什么? 这已成为ZF、政策制定者和科技领导者必须尽快回答的问题。
结语
Scale AI 的故事,是 硅谷创新、野心和争议 的典型案例。它的技术正在塑造 AI 的未来,但 外包劳工和军事合同 也引发了重要的 伦理问题。
未来,Scale AI 能否继续在 AI 行业保持领先地位? 只有时间能给出答案。