神经网络中用的名词解释:hyperparameters超参数,tensor张量,embedding vector嵌入向量

1. hyperparameters 超参数

超参数还是参数,是未知的。和一般的参数不同的是,一般意义上的参数是需要去估计的。但是超参数是人为设定的,不是估计得到的。机器学习中经常说到的“调参”就是在调整超参数。

2. tensor张量

首先推荐youtube上的一个视频讲解
对这个概念,我的理解是以我们熟悉的三维空间举例,有三个坐标轴,(x,y,z)。

  • 0阶张量:就是这三个方向永远都是0,也就是scalar;
  • 1阶张量:就是这三个方向都有延展,也就是我们熟悉的任意一个向量都可以用(x,y,z)来表示;
  • 2阶张量:在1阶张量的基础上,再增加一个空间

3. embedding vector嵌入向量

google上搜索给出的结果是:An embedding is a relatively low-dimensional space into which you can translate high-dimensional vectors.
举一个很简单的例子就容易理解了。对于图像的数据,我们都知道他可以用RGB的数据来表示,我们可以说(R,G,B)是一个嵌入向量。一般的向量的定义的话,R,G,B都是scalar.但是对于嵌入向量来说,R,G,B分别还可以是向量,矩阵等等。

下面是使用PyTorch构建神经网络进行贝叶斯超参数优化的代码示例。使用了贝叶斯优化库 `BayesianOptimization`。 ```python import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader from torchvision import datasets, transforms from bayes_opt import BayesianOptimization class Net(nn.Module): def __init__(self, input_size, hidden_size, output_size): super(Net, self).__init__() self.fc1 = nn.Linear(input_size, hidden_size) self.relu = nn.ReLU() self.fc2 = nn.Linear(hidden_size, output_size) def forward(self, x): x = self.fc1(x) x = self.relu(x) x = self.fc2(x) return x def train(model, device, train_loader, optimizer, criterion): model.train() for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device), target.to(device) optimizer.zero_grad() output = model(data) loss = criterion(output, target) loss.backward() optimizer.step() def test(model, device, test_loader, criterion): model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device) output = model(data) test_loss += criterion(output, target).item() pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) accuracy = 100.0 * correct / len(test_loader.dataset) return test_loss, accuracy def train_and_evaluate(hidden_size, learning_rate): # Set up device device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Set up data loaders batch_size = 64 transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]) train_data = datasets.MNIST("data", train=True, download=True, transform=transform) test_data = datasets.MNIST("data", train=False, download=True, transform=transform) train_loader = DataLoader(train_data, batch_size=batch_size, shuffle=True) test_loader = DataLoader(test_data, batch_size=batch_size, shuffle=False) # Set up model input_size = 784 output_size = 10 model = Net(input_size, int(hidden_size), output_size).to(device) # Set up optimizer and loss function optimizer = optim.SGD(model.parameters(), lr=learning_rate, momentum=0.9) criterion = nn.CrossEntropyLoss() # Train and test the model for epoch in range(10): train(model, device, train_loader, optimizer, criterion) test_loss, accuracy = test(model, device, test_loader, criterion) print(f"Epoch {epoch + 1} - Test Loss: {test_loss:.4f}, Accuracy: {accuracy:.2f}%") return accuracy if __name__ == "__main__": # Define hyperparameter search space pbounds = {"hidden_size": (50, 500), "learning_rate": (1e-5, 1e-1)} # Set up optimizer optimizer = BayesianOptimization(f=train_and_evaluate, pbounds=pbounds) # Run optimizer optimizer.maximize(init_points=5, n_iter=20) # Print best hyperparameters print(optimizer.max) ``` 在这个例子中,我们使用 MNIST 数据集作为我们的训练数据,并构建了一个简单的两层全连接神经网络作为我们的模型。然后,我们使用 `BayesianOptimization` 来搜索隐藏层大小和学习率的最佳值。在每次迭代中,我们使用 `train_and_evaluate` 函数来训练和测试模型,并返回测试准确率作为优化目标。最后,我们打印出找到的最佳超参数组合。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值