tensorflow API:tf.control_dependencies

原文参考:
http://blog.csdn.net/u012436149/article/details/72084744

Args: control_inputs: A list of Operation or Tensor objects which must be executed or computed before running the operations defined in the context. Can also be None to clear the control dependencies.
ARGS:
control_inputs:在运行上下文中定义的操作之前必须执行或计算的 Operation 列表或 Tensor 对象。也可以是不清除控件依赖项。

Returns: A context manager that specifies control dependencies for all operations constructed within the context.
返回:
指定上下文中构建的所有操作的控制依赖关系的上下文管理器。

例子:

opt = tf.train.Optimizer().minize(loss)
with tf.control_dependencies([opt]):
  updated_weight = tf.identity(weight)
with tf.Session() as sess:
  tf.global_variables_initializer().run()
  sess.run(updated_weight, feed_dict={...}) # 这样每次得到的都是更新后的weight
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值