1. 消元法
⎡⎣⎢130284111⎤⎦⎥(1)
依次消去主元1(x),主元2(y);(2)中对角线上的元素依次为主元
⎡⎣⎢1002201−25⎤⎦⎥(2)
1). Success
2). Failure
失效,指的是不能得到3个主元;0不能做主元,可通过行交换解决“暂时性失效”。
若主元位置为0且下面元素也为0,那么完全失效,即可逆矩阵。
2. 回代
增广矩阵:
⎡⎣⎢⎢1302841112122⎤⎦⎥⎥(3)
经过变换后为
⎡⎣⎢⎢1002201−2526−10⎤⎦⎥⎥
代入方程为
x+2y+z=22y−2z=65z=10
3. 消元矩阵
step1. 减去 -3*row1 from row2
左边矩阵称为初等矩阵,用 E32 表示,其中第一行表示(1 0 0)表示只取第一行,其他行不取;对于第二行(-3 1 0)表示第二行减去第一行*-3。
⎡⎣⎢1−30010001⎤⎦⎥⎡⎣⎢130284111⎤⎦⎥=⎡⎣⎢1002241−21⎤⎦⎥
step2. 减去2*row2 from row3
⎡⎣⎢10001−2001⎤⎦⎥⎡⎣⎢1002241−21⎤⎦⎥=⎡⎣⎢1002201−21⎤⎦⎥
4. 矩阵相乘
如何将矩阵A通过一次变换成为矩阵U,可将
E32(E21A)=(E32E21)A
;
这种移动括号的定律称为结合律,线性代数中很多证明都要用到这种定律。 但是乘法顺序不能变!!!
左边乘法,行变换
[0110][acbd]=[cadb]
右边乘法,列变换
[acbd][0110]=[bdac]
逆矩阵
对于step1中我们想恢复原来的数据,实际上找到变换矩阵的逆矩阵,对于A而言相当于乘以单位矩阵
step1中的逆操作为,加上3*row1 from row2
⎡⎣⎢130010001⎤⎦⎥⎡⎣⎢1−30010001⎤⎦⎥=⎡⎣⎢100010001⎤⎦⎥