h5 hdf5 pytables 数据库 减少空间占用的方法

本文介绍了如何处理H5数据库中删除数据后空间无法释放的问题,推荐使用h5repack工具进行重建,并结合无损压缩(如gzip)以节省空间。详细讲解了Windows系统下的h5repack命令安装和使用方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

方法来源:https://forum.hdfgroup.org/t/hdf5-deleting-datasets-and-recovering-space/1293

h5 数据库,在删除一些数据,表,数组后,无法变小;
或是在多次读写后,会越来越大,并且有一些空间会永久无法重用,导致浪费。

此时可以使用 h5repack 工具,快速重建 h5 数据库,可以立刻把未使用空间省出来。
也可以同时使用无损压缩,进一步减少 h5数据库的空间占用。

重建 h5 数据库的命令

h5repack old.hdf5 new.hdf5

重建 h5 数据库时,同时使用 gzip 进行压缩

h5repack -f GZIP=1 .\tmp_db.hdf5 new.hdf5

h5repack 命令的来源
在hdf5 的官方下载页面 https://portal.hdfgroup.org/downloads/index.html 点击这个
在这里插入图片描述
在这里找到预构建的安装程序
在这里插入图片描述
我的是windows系统,所以选中 windows 系统
在这里插入图片描述
然后选择这个在这里插入图片描述
直接安装之后,重启系统,即可有 h5repack 命令

### Python 中不使用纯文本处理数据的方法和库 #### 使用结构化数据格式 除了传统的纯文本文件外,Python 支持多种更高效的结构化数据存储方式。这些方法不仅提高了读写效率,还增强了数据的安全性和可维护性。 #### JSON 数据处理 JSON 是一种轻量级的数据交换格式,易于阅读和编写。Python 的 `json` 库提供了方便的操作接口来解析和生成 JSON 文件。 ```python import json data = { "name": "Alice", "age": 30, "city": "New York" } with open('data.json', 'w') as f: json.dump(data, f) with open('data.json', 'r') as f: loaded_data = json.load(f) ``` #### XML 和 YAML 格式支持 对于配置文件或其他需要层次结构表示的应用场景,XML 或者 YAML 可能更为合适。PyYAML 提供了对 YAML 文件的支持;而 xml.etree.ElementTree 则用于操作 XML 文档[^1]。 #### CSV 文件管理 CSV (逗号分隔值) 文件是一种常见的表格型数据源形式。Pandas 库以其强大灵活的功能成为处理此类数据的理想选择之一。 ```python import pandas as pd df = pd.DataFrame({ 'Name': ['John', 'Jane'], 'Age': [28, 34], }) df.to_csv('people.csv', index=False) read_df = pd.read_csv('people.csv') ``` #### HDF5 存储解决方案 HDF5 设计用来保存大量的科学计算产生的多维数组信息。h5py 和 PyTables 这两个第三方包允许用户创建、访问并修改 HDF5 文件中的大型数据集[^3]。 #### 关系数据库交互 SQLAlchemy 是一个 SQL 工具箱及 ORM 框架,它为应用程序提供了一个全面且通用的方式去连接关系型数据库管理系统(RDBMS),从而简化复杂查询语句的构建过程[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值