PyTorch学习之环境准备

本文详细介绍了如何一步步配置机器学习环境,包括安装Anaconda、NVIDIA GeForce驱动、CUDA、cuDNN以及PyTorch。在安装过程中遇到的问题及解决办法也被提及,最终成功验证PyTorch安装完成。
摘要由CSDN通过智能技术生成

1.安装Anaconda

官网下载指路→Anaconda下载官网
选择相应系统即可开始下载~

  • 下载结束后根据下载路径点击启动exe文件,根据安装向导进行安装
    在这里插入图片描述
  • 下载路径要选择一个空文件夹
    在这里插入图片描述
  • 勾选Add path (不然后续需要自己配置环境变量,有些麻烦)
    在这里插入图片描述
  • 点击install 静待安装完成即可

如何验证安装完成:
键盘win+R启动cmd,输入

conda list

正确显示一系列默认安装的包即成功安装anaconda
正确显示默认安装的包即成功安装anaconda

2.NVIDIA——GeForce驱动程序安装(必须在cuda安装之前进行)

官网下载指路→GeForce驱动程序

  • 下载完成后点击启动exe文件,若之前未注册需要先根据向导创建账户
    登录后会开始自动下载GeForce Game Ready 驱动程序,等待下载。。。
    根据
  • 下载完成后点击自定义安装,记住勾选清洁安装,等待安装完成。。。
    在这里插入图片描述
    如何检验安装完成:
    搜索控制面板->系统->设备管理器->查看“显示适配器”下是否有NVIDIA
    在这里插入图片描述在这里插入图片描述在这里插入图片描述

3.安装cuda

官网下载指路→cuda previous release
根据需求选择合适的版本,别选错啦!>_<
下载完成后点击启动exe文件根据安装向导进行安装即可

4. 安装cuDNN

cuDNN下载官网
第一次进入需要注册账户
具体操作参考 安装cuda,cuDNN指南

5.PyTorch安装

官网下载指路→PyTorch官网
前期发布版本→previous release

  • 此处作者没有选择最新版本,而是根据教程下载了之前的10.0版本
    在这里插入图片描述
  • 以管理员身份运行命令行,输入刚才拷贝的命令
    在这里插入图片描述
    等个一天一夜

(由于作者心态易崩,重复卸载安装,进行了混乱操作,一度把环境搞烂了,出现了“CondaHTTPError: HTTP 000 CONNECTION FAILED for url https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64/current_repodata.json”的错误)

解决问题参考→感谢大佬救我

如何验证pytorch环境安装成功:

  1. 命令行法
    在这里插入图片描述返回True即说明成功搭建!
  2. pycharm法
  • 新建项目文件
    在这里插入图片描述

  • 点击Conda Environment
    在这里插入图片描述

  • 在Anaconda安装根目录下找到python.exe文件
    在这里插入图片描述在这里插入图片描述点击创建即可

  • 输入以下程序,等待输出验证

import torch

print(torch.__version__);
print('gpu:',torch.cuda.is_available());

输出
在这里插入图片描述
返回True

为了这个最后的“True” 用了一整天! QAQ
世上无难事,只要肯重装 T_T
加油!加油! 总算迈出机器学习实战第一步了!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值