Llama 3.1超大405B!AI巨浪再掀新高潮

前沿科技速递🚀

Meta公司宣布开放的Llama 3.1系列模型,以其惊人的128K上下文长度、对八种语言的支持以及业界领先的405B开放式最前沿AI模型,瞬间吸引了全球科技界的目光。该系列模型不仅在通用知识、可控性、数学、工具使用和多语言翻译等方面表现出色,还通过开源的方式,为全球开发者提供了一个强大的平台,助力他们解锁新的工作流和应用场景。

来源:传神社区

Llama 3.1 405B:业界巅峰之作

Llama 3.1 405B作为系列中的旗舰产品,以其4050亿参数的规模,成为目前参数量最大的开源模型之一。该模型在通用知识、可控性、数学、工具使用和多语言翻译等方面均展现出顶尖水平,足以与市场上最好的闭源模型如GPT-4和Claude 3.5 Sonnet相媲美。通过扩展上下文长度、增强推理能力和改进工具使用,Llama 3.1 405B能够支持高级应用如长文本摘要、多语言对话代理和编程助手,为开发者提供了无限可能。

图片

多尺寸选择和多语言支持:满足不同需求

除了405B型号外,Llama 3.1系列还提供了70B和8B两种尺寸的模型,以满足不同场景下的需求。70B型号作为高性能且性价比很高的中端模型,能在性能和成本之间取得良好平衡;而8B型号则以其轻量级和超高速的特点,几乎可以在任何设备上运行,特别适合资源受限的环境。

图片

Llama 3.1系列模型支持英语、德语、法语、意大利语、葡萄牙语、印地语、西班牙语和泰语等多种语言,为全球用户提供了无缝的语言交流体验。这一特性使得模型在跨国企业、多语言社区以及全球化应用中具有极高的应用价值。

图片

开源与生态系统

Meta公司坚持开源策略,将Llama 3.1系列模型向全球开发者开放。这一举措不仅促进了AI技术的普及和应用,还极大地推动了AI生态系统的繁荣发展。Meta还提供了与模型协同工作的多个组件和参考系统,以及全新的安全工具如Llama Guard 3和Prompt Guard,以支持开发者更加负责任地开发AI应用。除了最基本的根据提示词响应,Meta官方表示,任何普通开发者可以用它做些高级的事情,比如:

  • 实时和批量推理

  • 监督微调

  • 针对特定应用评估模型

  • 持续预训练

  • 检索增强生成 (RAG)

  • 函数调用

  • 合成数据生成

而这背后也是由它的强大生态伙伴支持。在Llama 3.1发布之际,Meta已经与亚马逊AWS、NVIDIA英伟达、Databricks、Groq、戴尔、微软Azure、谷歌云和Snowflake等25多家合作伙伴建立了合作关系。这些合作伙伴将提供相关的服务和工具,以支持开发者在更广泛的生态系统中开发和部署Llama 3.1模型。

图片

llama3.1快速体验下载

传神社区:

llama-3.1-8B版本:

  • https://opencsg.com/models/AIWizards/Meta-Llama-3.1-8B-Instruct

  • llama-3.1-70B和llama-3.1-405B版本持续更新中~

    可以先通过磁力链接下载405B版本:Magnet: magnet:?xt=urn:btih:c0e342ae5677582f92c52d8019cc32e1f86f1d83&dn=miqu-2&tr=udp%3A%2F%http://2Ftracker.openbittorrent.com%3A80

huggingface:

  • https://huggingface.co/meta-llama

欢迎加入传神社区

•贡献代码,与我们一同共建更好的OpenCSG

•Github主页

欢迎🌟:https://github.com/OpenCSGs

•Huggingface主页

欢迎下载:https://huggingface.co/opencsg

•加入我们的用户交流群,分享经验

图片

扫描上方二维码添加传神小助手


“      关于OpenCSG

开放传神(OpenCSG)成立于2023年,是一家致力于大模型生态社区建设,汇集人工智能行业上下游企业链共同为大模型在垂直行业的应用提供解决方案和工具平台的公司。

关注OpenCSG

图片

加入传神社区

图片

<think>好的,用户问的是如何将Llama3.1模型转换为Hugging Face格式的Llama3.1_hf。首先我需要回顾一下相关的知识,尤其是参考提供的引用内容。 根据引用[1],里面提到将HuggingFace格式的模型转换为GGUF格式使用了llama.cpp的convert_hf_to_gguf.py脚本。这说明转换工具可能需要逆向操作。但用户的问题是从原始Llama3.1转换为Hugging Face格式,所以可能需要官方提供的转换脚本或工具。 另外,引用[4]提到Hugging Face的下载和申请步骤,可能用户需要先获得Llama3.1的原始权重,这些通常是以PyTorch格式保存的。Hugging Face的模型通常使用transformers库,所以需要将原始权重转换成对应的结构。 可能需要检查Hugging Face的官方文档是否有关于Llama3.1的转换指南。通常,Meta会提供转换脚本,比如使用他们的代码库中的转换脚本,将原始模型转换为Hugging Face支持的格式。 例如,transformers库通常提供转换脚本,比如将原始权重转换为PyTorch的.bin文件,并创建配置文件如config.json。用户可能需要下载官方发布的权重,然后运行类似convert_llama_weights_to_hf.py的脚本,这样就能生成Hugging Face格式的模型。 此外,注意引用[3]中提到加载Llama3.1模型到Ollama,可能需要先有Hugging Face格式的模型才能进行后续操作。所以转换步骤可能包括下载原始权重,使用Meta提供的转换脚本,然后保存为Hugging Face结构。 总结步骤可能是:1. 获取原始Llama3.1模型文件;2. 使用官方转换脚本转换为Hugging Face格式;3. 验证转换后的模型是否可用。同时可能需要安装必要的库,如transformers和torch,并确保版本兼容性。 另外,用户可能需要申请访问Llama3.1的模型权重,因为Meta的模型通常需要权限,引用[4]提到注册Huggingface和申请使用,这可能涉及到获取访问令牌或同意使用条款。 最后,可能需要提醒用户注意文件路径和依赖版本,确保转换过程顺利。</think>根据Hugging Face和Meta的模型转换规范,将Llama3.1原始模型转换为Hugging Face格式需要以下步骤: ### 转换步骤 1. **获取原始模型权重** - 从Meta官方渠道下载Llama3.1原始模型文件(通常为`.pth`或`.pt`格式) - 需要完成Hugging Face账户认证和模型使用申请[^4] 2. **安装依赖库** ```bash pip install transformers torch>=2.0 accelerate ``` 3. **使用官方转换脚本** ```python # 示例转换命令(具体脚本路径需根据实际存放位置调整) python src/transformers/models/llama/convert_llama_weights_to_hf.py \ --input_dir ./llama3.1_original \ --model_size 8B \ --output_dir ./llama3.1_hf ``` 4. **验证转换结果** ```python from transformers import AutoTokenizer, AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained("./llama3.1_hf") tokenizer = AutoTokenizer.from_pretrained("./llama3.1_hf") print(model.config) # 应显示Llama3.1的配置参数 ``` ### 关键注意事项 1. **文件结构规范** ``` llama3.1_hf/ ├── config.json ├── generation_config.json ├── model-00001-of-00002.safetensors ├── model-00002-of-00002.safetensors └── tokenizer.json ``` 2. **格式差异说明** - 原始格式:PyTorch二进制权重文件 - HF格式:分片的安全张量文件(safetensors)+ 标准化配置文件 - 转换过程会保留所有模型参数和分词器配置 3. **GPU内存要求** | 模型规模 | 最小显存 | |---------|---------| | 8B | 16GB | | 70B | 80GB | ### 常见问题排查 1. 出现`KeyError`时,检查transformers库是否为最新版本 2. 遇到内存不足错误,可添加`--max_shard_size 2GB`参数分片保存 3. 转换后的模型应通过`model.save_pretrained()`生成标准化文件结构[^1]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值