开发者实战 | AI for Science:OpenVINO™ + 英特尔显卡解薛定谔方程

点击蓝字

关注我们,让开发变得更有趣

作者:王立奇 英特尔边缘计算创新大使

01ec8a3e8f76615861572d5b330d2e6a.png

一、PINN—加入物理约束的神经网络

d3af4d2bf98663e3988415ba0a492554.png

5a0d19b1f14055c20205d1dbb08deded.png

基于物理信息的神经网络(Physics-informed Neural Network, 简称PINN),是一类用于解决有监督学习任务的神经网络,它不仅能够像传统神经网络一样学习到训练数据样本的分布规律,而且能够学习到数学方程描述的物理定律。与纯数据驱动的神经网络学习相比,PINN在训练过程中施加了物理信息约束,因而能用更少的数据样本学习到更具泛化能力的模型。本文主要解析这种神经网络以及相关应用。

论文简介

Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations 。

https://www.sciencedirect.com/science/article/pii/S0021999118307125

(复制链接到浏览器中打开查看详细信息)

2019年,来自布朗大学应用数学的研究团队提出了一种用物理方程作为运算限制的“物理激发的神经网络” (PINN) 并发表在了计算物理学领域权威杂志《计算物理学期刊》(Journal of Computational Physics) 上。这篇论文一经发表就获得了大量关注。这篇论文因为代码体系的完整性使得开发人员们很容易上手把相关的学习框架应用到不同领域上去。所以在发表不久之后,一系列不同的PINN也被其他研究者开发出来。甚至可以不夸张的说,PINN是目前AI物理领域论文中最常见到的框架和词汇之一。

算法描述

而所谓的物理神经网络,其实就是把物理方程作为限制加入神经网络中使训练的结果满足物理规律。而这个所谓的限制是怎么实现的?其实就是通过把物理方程的迭代前后的差值加到神经网络的损失函数里面去,让物理方程也“参与”到了训练过程。这样,神经网络在训练迭代时候优化的不仅仅是网络自己的损失函数,还有物理方程每次迭代的差,使得最后训练出来的结果就满足物理规律了。

642c30c0639009f8ad991aef79ed90c4.png

二、DeepXDE

3b41ccaab977b9d7f1c628f8f9596573.png

DeepXDE 由 Lu Lu 在布朗大学 George Karniadakis 教授的指导下于 2018 年夏季至 2020 年夏季开发,并得到 PhILM 的支持。DeepXDE 最初是在布朗大学的 Subversion 中自行托管的,名称为 SciCoNet(科学计算神经网络)。2019 年 2 月 7 日,SciCoNet 从 Subversion 迁移到 GitHub,更名为 DeepXDE。

DeepXDE 特性

DeepXDE 已经实现了如上所示的许多算法,并支持许多特性:

  • 复杂的域几何图形,没有专制网格生成。原始几何形状是间隔、三角形、矩形、多边形、圆盘、长方体和球体。其他几何可以使用三个布尔运算构建为构造实体几何 (CSG):并集、差集和交集。

  • 多物理场,即(时间相关的)耦合偏微分方程。

  • 5 种类型的边界条件 (BC):Dirichlet、Neumann、Robin、周期性和一般 BC,可以在任意域或点集上定义。

  • 不同的神经网络,例如(堆叠/非堆叠)全连接神经网络、残差神经网络和(时空)多尺度傅里叶特征网络。

  • 6种抽样方法:均匀抽样、伪随机抽样、拉丁超立方抽样、Halton序列、Hammersley序列、Sobol序列。

  • 训练点可以在训练期间保持不变,也可以每隔一定的迭代重新采样一次。

  • 方便保存 训练期间的模型,并加载训练好的模型。

  • 使用 dropout 的不确定性量化。

  • 许多不同的(加权)损失、优化器、学习率计划、指标等回调,用于在训练期间监控模型的内部状态和统计信息,例如提前停止。

  • 使用户代码紧凑,与数学公式非常相似。

  • DeepXDE 的所有组件都是松耦合的,因此 DeepXDE 结构良好且高度可配置。

  • 可以轻松自定义 DeepXDE 以满足新的需求。

数值算例

(1)问题设置

我们将求解由下式给出的非线性薛定谔方程:

ecd6b6648b2f4f9f188d333017f7ef77.png

周期性边界条件为:

a6871ba5a413af9481010b7cc2640125.png

初始条件为:

37b6c8d5a87735647628ac9287f50f6e.png

Deepxde 只使用实数,因此我们需要明确拆分复数 PDE 的实部和虚部。

代替单个残差:

7b5d9d49b261e0a9ccf8081c337a171f.png

我们得到两个(实值)残差:

da2607d0b61783a9356b0e0f569fce36.png

其中 u ( x , t )和 v ( x , t ) 分别表示h的实部和虚部。

import numpy as np
import deepxde as dde

# 用于绘图

import matplotlib.pyplot as plt
from scipy.interpolate import griddata


x_lower = -5
x_upper = 5
t_lower = 0
t_upper = np.pi / 2

左滑查看更多

# 创建 2D 域(用于绘图和输入)

x = np.linspace(x_lower, x_upper, 256)
t = np.linspace(t_lower, t_upper, 201)
X, T = np.meshgrid(x, t)

左滑查看更多

# 整个域变平

X_star = np.hstack((X.flatten()[:, None], T.flatten()[:, None]))

左滑查看更多

# 空间和时间域/几何(对于 deepxde 模型)

space_domain = dde.geometry.Interval(x_lower, x_upper)
time_domain = dde.geometry.TimeDomain(t_lower, t_upper)
geomtime = dde.geometry.GeometryXTime(space_domain, time_domain)

左滑查看更多

# 损失的“物理信息”部分

def pde(x, y):
    """
    INPUTS:
        x: x[:,0] 是 x 坐标
           x[:,1] 是 t 坐标
        y: 网络输出,在这种情况下:
            y[:,0] 是 u(x,t) 实部
            y[:,1] 是 v(x,t) 虚部
    OUTPUT:
        标准形式的 pde,即必须为零的东西
    """


    u = y[:, 0:1]
    v = y[:, 1:2]

左滑查看更多

 # 在'jacobian'中,i 是输出分量,j 是输入分量

u_t = dde.grad.jacobian(y, x, i=0, j=1)
    v_t = dde.grad.jacobian(y, x, i=1, j=1)


    u_x = dde.grad.jacobian(y, x, i=0, j=0)
    v_x = dde.grad.jacobian(y, x, i=1, j=0)

左滑查看更多

# 在“hessian”中,i 和 j 都是输入分量。 (Hessian 原则上可以是 d^2y/dxdt、d^2y/d^2x 等)

 # 输出组件由“组件”选择

u_xx = dde.grad.hessian(y, x, component=0, i=0, j=0)
    v_xx = dde.grad.hessian(y, x, component=1, i=0, j=0)


    f_u = u_t + 0.5 * v_xx + (u ** 2 + v ** 2) * v
    f_v = v_t - 0.5 * u_xx - (u ** 2 + v ** 2) * u


    return [f_u, f_v]

左滑查看更多

# 边界条件和初始条件

# 周期性边界条件

bc_u_0 = dde.PeriodicBC(
    geomtime, 0, lambda _, on_boundary: on_boundary, derivative_order=0, component=0
)
bc_u_1 = dde.PeriodicBC(
    geomtime, 0, lambda _, on_boundary: on_boundary, derivative_order=1, component=0
)
bc_v_0 = dde.PeriodicBC(
    geomtime, 0, lambda _, on_boundary: on_boundary, derivative_order=0, component=1
)
bc_v_1 = dde.PeriodicBC(
    geomtime, 0, lambda _, on_boundary: on_boundary, derivative_order=1, component=1
)

左滑查看更多

# 初始条件

def init_cond_u(x):
    "2 sech(x)"
    return 2 / np.cosh(x[:, 0:1])
    
def init_cond_v(x):
    return 0




ic_u = dde.IC(geomtime, init_cond_u, lambda _, on_initial: on_initial, component=0)
ic_v = dde.IC(geomtime, init_cond_v, lambda _, on_initial: on_initial, component=1)
data = dde.data.TimePDE(
    geomtime,
    pde,
    [bc_u_0, bc_u_1, bc_v_0, bc_v_1, ic_u, ic_v],
    num_domain=10000,
    num_boundary=20,
    num_initial=200,
    train_distribution="pseudo",
)

左滑查看更多

# 网络架构

net = dde.maps.FNN([2] + [100] * 4 + [2], "tanh", "Glorot normal")


model = dde.Model(data, net)

左滑查看更多

Adam 优化

# 强烈建议使用 GPU 加速系统.

model.compile("adam", lr=1e-3, loss="MSE")
model.train(epochs=1000, display_every=100)

左滑查看更多

8ac9b842fdf99ab76c2640c4201adc96.png

L-BFGS 优化

dde.optimizers.config.set_LBFGS_options(
    maxcor=50,
    ftol=1.0 * np.finfo(float).eps,
    gtol=1e-08,
    maxiter=1000,
    maxfun=1000,
    maxls=50,
)
model.compile("L-BFGS")
model.train()
Compiling model...
'compile' took 0.554160 s


Training model...


Step      Train loss                                                                          Test loss                                                                           Test metric
1000      [1.25e-02, 1.32e-02, 2.72e-06, 3.28e-04, 5.27e-06, 4.65e-06, 2.24e-02, 1.31e-03]    [1.25e-02, 1.32e-02, 2.72e-06, 3.28e-04, 5.27e-06, 4.65e-06, 2.24e-02, 1.31e-03]    []  
2000      [7.03e-04, 7.62e-04, 6.76e-06, 1.33e-05, 2.88e-07, 8.49e-06, 4.01e-04, 3.86e-05]                                                                                            
INFO:tensorflow:Optimization terminated with:
  Message: STOP: TOTAL NO. of f AND g EVALUATIONS EXCEEDS LIMIT
  Objective function value: 0.001928
  Number of iterations: 945
  Number of functions evaluations: 1001
2001      [7.18e-04, 7.43e-04, 6.27e-06, 1.23e-05, 2.94e-07, 8.89e-06, 4.01e-04, 3.82e-05]    [7.18e-04, 7.43e-04, 6.27e-06, 1.23e-05, 2.94e-07, 8.89e-06, 4.01e-04, 3.82e-05]    []  


Best model at step 2001:
  train loss: 1.93e-03
  test loss: 1.93e-03
  test metric: []


'train' took 179.449384 s












(<deepxde.model.LossHistory at 0x13422ad90>,
 <deepxde.model.TrainState at 0x10d759850>)

左滑查看更多

# 做预测

prediction = model.predict(X_star, operator=None)


u = griddata(X_star, prediction[:, 0], (X, T), method="cubic")
v = griddata(X_star, prediction[:, 1], (X, T), method="cubic")


h = np.sqrt(u ** 2 + v ** 2)

左滑查看更多

# 绘制预测

fig, ax = plt.subplots(3)


ax[0].set_title("Results")
ax[0].set_ylabel("Real part")
ax[0].imshow(
    u.T,
    interpolation="nearest",
    cmap="viridis",
    extent=[t_lower, t_upper, x_lower, x_upper],
    origin="lower",
    aspect="auto",
)
ax[1].set_ylabel("Imaginary part")
ax[1].imshow(
    v.T,
    interpolation="nearest",
    cmap="viridis",
    extent=[t_lower, t_upper, x_lower, x_upper],
    origin="lower",
    aspect="auto",
)
ax[2].set_ylabel("Amplitude")
ax[2].imshow(
    h.T,
    interpolation="nearest",
    cmap="viridis",
    extent=[t_lower, t_upper, x_lower, x_upper],
    origin="lower",
    aspect="auto",
)


plt.show()

左滑查看更多

6890c708c52fbea8dfb83813d600acd6.png

三、生成OpenVINO™ IR模型

acd2de4ceb59b2c676052aba8ae3c00c.png

如需使用LabVIEW OpenVINO™推理deepxde的模型,需要做以下几步:

将deepxde模型转成onnx模型作为中间件:

160f78ff9b5b0a310ef6a91d22a97b2c.png

代码中,我们首先要创建一个和X_star的形状相同的X2作为参考输入(X2必须是cpu上的矩阵),其次是新建一个基于cpu的mode2,其权重和model完全一致。最后使用torch.onnx.export生成onnx模型。

使用命令行将onnx模型转为IR模型:

mo --input_model Schrodinger.onnx --input_shape "[256,2]"

左滑查看更多

9be6b58bd92b0aa697df6243e52910a6.png

命令中,我们将输入的形状设置为256*2,其中第0列为位置x,第1列为时间t。256为我们设置的每个时间点需要推理的x的点数,可以为任意长度。

完成上述两个步骤后,我们可以看到文件夹里多了三个文件Schrodinger.onnx、Schrodinger.xml和Schrodinger.bin。其中onnx为pytorch生成的onnx模型,xml和bin为mo生成的OpenVINO™ IR模型。

四、LabVIEW调用IR模型

59d7cdcc4648ced343e62a0006ac916c.png

LabVIEW是NI推出的图形化编程环境,在科研、工业测控领域有着广泛的应用。使用LabVIEW的波形图、强度图等控件,可以使用户更直观的观测自己模型的训练结果。

使用我们编写好的Schrodinger_OpenVINO™.vi,即可快速推理Schrodinger方程的OpenVINO™模型。以下是使用LabVIEW调用模型的步骤:

1. 初始化模型:使用LoadIR.vi调用xml和bin文件,推理引擎可使用CPU或GPU(Intel核显或独显);

e0f1711fdce9bd08bc23d16f92168636.png

2. 初始化位置。根据我们训练时用的参数,需要模拟-5~5范围内任意数量的位置点(本案例中使用256个位置点)。

3cd54736f2aeafb0957649fc4bededf0.png

3. 初始化时间,根据我们训练的参数,需要模拟0~pi/2范围内任意数量的时间点(本案例中使用201个时间点。

cf7efaa8e789f08c1516419fd63272e0.png

4. 推理模型时。每次循环将某一个时间点复制256份,和所有的256个位置点组成2*256的二维数组,然后转置成256*2的数组,输入至网络中。

a5c7e16b3250d46c1e6dcb6773af7241.png

5. 获取输出。输出为256*2,但和输入的意义不同:其中第0列为波函数h的实部,第1列为h的虚部。因此需要将结果转置成2*256,后,方能使用波形图(Waveform Graph)显示两条曲线。

be6d001f253ab0dd0fb2ea51595f3b00.png

6. 获取整个时间段、所有位置的结果。使用For循环索引,保存所有时间段实部、虚部和幅值的结果,并显示在强度图上。

6dec10374eaf9f55c0a56d09718aeff8.png

7. 使用release.vi关闭OpenVINO™模型。

运行程序。我们使用Intel A770独立显卡(设备名称为GPU.1)运行该模型。运行结果如下图:

645c977547810f4a81a0a64af6197157.png

左边的波形图为每一个时间点的波函数实部和虚部的曲线,右边的强度图为所有时间点的实部、虚部和幅值分布。结果表明,使用OpenVINO™推理物理信息神经网络模型,和deepxde的结果完全一致。此外,在A770上模型也得到了最大加速,并节省了大量的cpu资源。

公司简介

上海仪酷智能科技有限公司是国内领先的人工智能软件提供商和机器人应用开发商,开发了低代码可重构的人工智能定制平台,包括基于边缘计算的高性能、高性价比工业硬件,以及跨平台的图形化深度学习视觉软件,满足智能制造、智慧医疗、智慧教育等多个领域的定制化需求;同时为广大院校用户搭建了人工智能教育软硬件平台(语音交互套件、无人驾驶套件、机械臂套件、以及支持所有硬件的云端实验平台);公司是百度、软银机器人、NI、Intel的战略合作伙伴,科大讯飞创投生态圈下企业,连续多年上海交通大学优秀合作伙伴,上海市高新技术企业,姑苏领军人才,且入驻百度飞桨人工智能产业赋能中心,拥有70余项专利及著作权,总部位于上海,于苏州、安庆设立分公司。

本文使用LabVIEW调用IR模型解薛定谔方程,主要使用了仪酷智能LabVIEW图形化AI视觉工具包和LabVIEW图形化OpenVINO工具包,大家可以在仪酷智能公司官网下载相应软件工具包:

http://www.virobotics.net/

(复制链接到浏览器中打开查看详细信息)

OpenVINO™

--END--

你也许想了解(点击蓝字查看)⬇️➡️ 开发者实战 | 介绍OpenVINO™ 2023.1:在边缘端赋能生成式AI➡️ 基于 ChatGLM2 和 OpenVINO™ 打造中文聊天助手➡️ 基于 Llama2 和 OpenVINO™ 打造聊天机器人➡️ OpenVINO™ DevCon 2023重磅回归!英特尔以创新产品激发开发者无限潜能➡️ 5周年更新 | OpenVINO™  2023.0,让AI部署和加速更容易➡️ OpenVINO™5周年重头戏!2023.0版本持续升级AI部署和加速性能➡️ OpenVINO™2023.0实战 | 在 LabVIEW 中部署 YOLOv8 目标检测模型➡️ 开发者实战系列资源包来啦!➡️ 以AI作画,祝她节日快乐;简单三步,OpenVINO™ 助你轻松体验AIGC
➡️ 还不知道如何用OpenVINO™作画?点击了解教程。➡️ 几行代码轻松实现对于PaddleOCR的实时推理,快来get!➡️ 使用OpenVINO 在“端—边—云”快速实现高性能人工智能推理
扫描下方二维码立即体验 
OpenVINO™ 工具套件 2023.1

点击 阅读原文 立即体验OpenVINO 2023.1

261467deac170030c110a5a26f5b061b.png

文章这么精彩,你有没有“在看”?

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: MATLAB是一种功能强大的数值计算软件,可以用来薛定谔方程的数值薛定谔方程描述了量子力学中粒子的行为,包括能量、波函数和概率分布等。薛定谔方程可以帮助我们研究量子系统的性质。 首先,我们需要将薛定谔方程转化为离散形式,这样才可以在计算机上求。根据差分方法,我们可以将空间和时间离散化,并用一系列网格来近似波函数。然后,我们将薛定谔方程中的各个项作为矩阵操作进行计算,包括动能和势能。最后,我们可以使用数值方法(如迭代法或变分法)求离散化的薛定谔方程。 在MATLAB中,我们可以使用矩阵运算和数值求算法来实现数值法。例如,我们可以使用“eig”函数来求离散化的薛定谔方程的本征值和本征函数。该函数可以通过对所得的矩阵进行对角化来计算本征值和本征函数。此外,MATLAB还提供了一系列用于数值求微分方程的函数,如“ode45”和“ode15s”等,可以用来求连续的波函数形式的薛定谔方程。 总之,MATLAB提供了强大的数值计算工具,可以用来求薛定谔方程的数值。通过离散化薛定谔方程并使用矩阵操作和数值求算法,我们可以计算得到波函数的数值和相关的物理量,从而深入研究量子力学体系的行为特征。 ### 回答2: MATLAB可以用来数值薛定谔方程,该方程描述了量子力学中粒子的波动性质。数值薛定谔方程是通过离散化空间和时间来近似求连续的薛定谔方程。 首先,我们需要定义一个时间和空间的离散网格。时间网格用来离散化时间,空间网格用来离散化位置。然后,我们要定义波函数的初始条件,以及描述系统的势能函数。 接下来,我们可以使用数值方法,如有限差分法或有限元法,来近似求薛定谔方程。这些方法将波函数在离散网格上进行近似计算。通过迭代计算波函数在不同时间步的近似,我们可以得到波函数的时间演化。 在MATLAB中,我们可以使用矩阵运算和循环结构来实现这些数值计算。具体步骤包括:计算哈密顿量,构建时间演化算子,迭代求波函数,在每个时间步计算波函数的值,并进行归一化。最后,我们可以通过可视化工具来展示波函数的变化。 需要注意的是,数值薛定谔方程是一种近似方法,其精确度取决于离散化的网格大小和数值方法的选择。因此,我们需要根据具体问题的要求来选择适当的参数和方法。 总之,MATLAB提供了强大的数值计算工具,可以用于数值薛定谔方程。通过对波函数在离散网格上的近似计算,我们可以研究量子系统的性质,并了其时间演化。 ### 回答3: 要使用MATLAB数值薛定谔方程,首先需要定义薛定谔方程以及初始条件。 薛定谔方程是一种描述量子力学中粒子行为的方程,可以写成如下形式: iħ(dψ/dt) = -ħ²/2m(d²ψ/dx²) + V(x)ψ 其中,i是虚数单位,ħ是约化普朗克常数,t是时间,ψ是波函数,x是空间坐标,m是粒子质量,V(x)是势能函数。 接下来,我们需要选择合适的初始条件并进行数值离散化。可以选择一个初始波函数ψ(x, 0),并将其在空间上离散成N个点,使用差分方法近似求方程。 然后,使用差分方法离散化方程,得到离散化的波函数值ψ(x, t),进行时间步进。可以使用有限差分或有限元等方法来近似求。 最后,对得到的数值进行可视化或其他后处理操作,以获取关于系统行为的信息。可以绘制波函数随时间演化的图像,或计算系统的能谱等。 需要注意的是,数值薛定谔方程是一种近似方法,其结果可能会受到离散化误差和数值误差的影响。因此,选择合适的参数和方法,并进行适当的误差控制是很重要的。另外,对于某些复杂的系统或问题,可能需要更高级的数值方法或并行计算来进行求

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值