环与圈_扩大路径法证明

前言: 本人正在B站上学习北京大学讲的离散数学,而且也把这门课程所有的PPT和课后习题及解答上传到CSDN。在这里,鄙人会把自己觉得有必要花时间积累的,需要理解的一些概念区分,定理证明和习题解答记录下来。下面是两部分内容,第一部分为“环”与“圈”的概念,第二部分为“极大路径”概念的理解和利用“扩大路径法”证明两道题目。
(一)“环”与“圈”

圈: 即初级回路,是没有重复顶点的回路。
(二)
1 极大路径
1)无向图

在这里插入图片描述

2)有向图
在这里插入图片描述
3)极大路径,更具体的(北大离散数学教程p121页)
首先给出“极大路径”的概念,设 G = < V , E > G=<V,E> G=<V,E>为n阶无向图, E ≠ ∅ E≠∅ E=,设 Γ l = v 0 v 1 … , v l Γ_l=v_0 v_1…,v_l Γl=v0v1,vl为G中的一条路径。若始点与 Γ l Γ_l Γl外的某顶点相邻,就将该顶点以及关联的边扩到 Γ l Γ_l Γl中来,若新路径的始点还与新的路径外的顶点相邻,就再将它及其关联的边扩到新的路径中来,得到更新的路径,继续这一过程,直到最后所得路径的始点不与其他路径外的任何顶点相邻为止,设终止时的路径为 Γ ( l + k ) = v 0 v 1 … , v ( l + k ) ( k ≥ 0 ) Γ_{(l+k)}=v_0 v_1…,v_{(l+k) }(k≥0) Γ(l+k)=v0v1,v(l+k)k0 (此时的 v 0 v_0 v0和之前的 v 0 v_{0} v0未必是同一个顶点)。再对 Γ ( l + k ) Γ_{(l+k)} Γ(l+k)的终点 v ( l + k ) v_{(l+k)} v(l+k)继续上述过程,设最终得到的路径为 Γ ( l + k + r ) = v 0 v 1 … , v ( l + k ) … v ( l + k + r ) Γ_{(l+k+r)}=v_0 v_1…,v_{(l+k)}…v_{(l+k+r)} Γ(l+k+r)=v0v1,v(l+k)v(l+k+r) ( k , r ≥ 0 ) (k,r≥0) k,r0它的始点 v 0 v_0 v0与终点 v ( l + k + r ) v_{(l+k+r)} v(l+k+r)不与 Γ ( l + k + r ) Γ_{(l+k+r)} Γ(l+k+r)之外的任何顶点相邻,则称 Γ ( l + k + r ) Γ_{(l+k+r)} Γ(l+k+r)为"极大路径",并称用构造“极大路径”证明定理或命题的方法为“扩大路径法”。有向图中起点的前驱元素以及终点的后继元素都在极大路径上。
在这里插入图片描述
评注: 如上图路径不断扩充顶点成为极大路径的过程。可以发现路径一侧的端点其实是在不断变化的。不断有当前端点的相邻端点被扩充进路径成为新的路径的端点。
2 1道实施扩大路径法的证明题
题目描述: G G G n ( n ≥ 3 n(n\geq3 n(n3)阶无向简单图, δ ( G ) ≥ 2 \delta(G)\geq2 δ(G)2。证明 G G G中有长度 ≥ \geq δ ( G ) + 1 \delta(G)+1 δ(G)+1的圈。
证明过程:
∀ u 0 ∈ V ( G ) {\forall}u_0\in V(G) u0V(G), δ ( G ) ≥ 2 \delta(G)\geq2 δ(G)2 ⇒ \Rightarrow ∃ u 1 ∈ N G ( u 0 ) \exists u_1\in N_G(u_0) u1NG(u0)
Γ 0 = u 0 u 1 \Gamma_0 = u_0 u_1 Γ0=u0u1采取扩大路径法,得到极大路径 Γ = v 0 v 1 . . . v k \Gamma=v_0v_1...v_k Γ=v0v1...vk
d ( v k ) ≥ δ ( G ) ⇒ k ≥ δ ( G ) d(v_k)\geq\delta (G)\Rightarrow k\geq \delta(G) d(vk)δ(G)kδ(G) (1)
为什么(1)式左边成立能推出右边成立?
因为 Γ \Gamma Γ是极大路径, v k v_k vk Γ \Gamma Γ的1个端点,根据极大路径的 定义,有 Γ \Gamma Γ的端点只允许和 Γ \Gamma Γ上的点相邻(有连接),不允许和不在路径上的点相邻。而 Γ \Gamma Γ上的顶点数是有限的。 v 0 v 1 . . . v k v_0v_1...v_k v0v1...vk有k+1个顶点,而除了 v k v_k vk本身,就剩下k个顶点。故
d ( v k ) ≤ k d(v_k)\leq k d(vk)k (2)
(2)式的解读可以是顶点 v k v_k vk的度至多为k。
根据 δ \delta δ的定义,立刻有
k ≥ d ( v k ) ≥ δ ( G ) k\geq d(v_k) \geq \delta(G) kd(vk)δ(G) (3)
另一方面,对极大路径的另一个端点 v 0 v_0 v0
d ( v 0 ) ≥ δ ( G ) d(v_0)\geq \delta (G) d(v0)δ(G) ⇒ \Rightarrow ∃ v i ∈ N G ( v 0 ) \exists v_i\in N_G(v_0) viNG(v0) , δ ( G ) ≥ i ≥ k \delta(G)\geq i \geq k δ(G)ik
v 0 v 1 . . . v i v 0 v_0v_1...v_iv_0 v0v1...viv0是长度 ≥ δ ( G ) + 1 \geq \delta(G)+1 δ(G)+1的图。
在这里插入图片描述

  • 12
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

培之

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值