3D案例 |让微小瑕疵无处遁形

视觉检测项目中,表面细小缺陷的检测难度较大。而在某些检测场合,不仅需要检测细小缺陷,还需要提取更多深度信息如尺寸、形状等来帮助判断质量缺陷。

这样高难度的检测需求让3D线激光轮廓测量仪在缺陷检测领域的应用越来越广泛,也为锂电池表面缺陷检测提供了新的解决方案。

△ 锂电池焊缝瑕疵尺寸检测

检测需求

1.检测电池外壳焊接后的凹坑、爆点等缺陷,

2.检测外壳两边四头方向的缝隙宽度和高度差。

检测难点

1.缺陷类型多且位置随机,对检测的速度和连续性要求高

2.焊缝与缺陷细小,测量设备须具备高分辨率和高精度

3.电池外壳存在高亮、高反光、折叠度高等复杂表面特性,易产生干扰

 — 使用产品 —

图片

○ 专业光学系统,微米级测量精度,轮廓点数高达4096点

○ 超高速采样49000轮廓/秒

○ 智能数据预处理算法功能

○ 多种测量模式灵活应用,可实现多种检测任务的精确测量

1.电池焊缝缺陷检测

根据产品相机倾斜30°扫描产品R角位置进行缺陷检测。

0.5mm锂电池外观缺陷检测 光子精密3D线激光轮廓测量仪

2.电池焊缝尺寸检测

根据产品相机水平扫描产品R角位置进行尺寸检测。检测焊缝的宽度以及高度差。(右侧图像为高度差检测图像,紫色矩阵与橙色矩阵做高度差计算)

### 微小瑕疵检测算法概述 微小瑕疵检测是一个复杂的技术领域,涉及多种先进的算法和技术。这些方法通常依赖于深度学习模型以及传统图像处理技术的组合。 #### 基于正样本的学习方法 一种有效的微小瑕疵检测方法是基于正样本的学习策略[^1]。这种方法通过构建专门针对表面缺陷的数据集,并训练神经网络来识别特定类型的瑕疵。该方法的核心在于如何设计适合正样本数据增强的方式,从而提升模型对不同光照条件和背景变化的适应能力。 #### 结合3D信息的高级检测方案 对于更复杂的场景,尤其是需要精确测量尺寸或形状的情况,可以采用融合三维信息的方法[^2]。这类技术不仅关注二维平面内的特征提取,还引入了高度图或其他形式的空间分布特性作为辅助输入。这使得即使面对非常细微的变化也能够被有效捕捉到并加以分类。 #### YOLOv5及其改进版本的应用实例 在实际工程项目当中,YOLO系列目标检测框架因其快速推理能力和良好泛化性能而备受青睐[^3]。特别是经过优化后的YOLOv5变体,在处理诸如金属材料上的划痕或者孔洞等问题上表现出色。它支持实时在线监控的同时保持较高的查全率与查准率平衡点;另外借助预训练权重初始化参数,则进一步缩短收敛时间并改善最终效果。 以下是使用Python实现的一个简单版YOLOv5加载流程: ```python import torch from PIL import Image # 加载已有的yolov5模型 model = torch.hub.load('ultralytics/yolov5', 'custom', path='best.pt') def detect_defects(image_path): img = Image.open(image_path) results = model(img) # 输出预测框坐标及相关置信度分数 predictions = results.pandas().xyxy[0] return predictions ``` 此脚本展示了如何调用官方仓库中的`torch.hub`接口完成自定义权值文件(`best.pt`)导入操作,并执行单张图片测试过程。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值