复变函数论9-调和函数1:平均值定理与极值原理

本文深入探讨调和函数的性质,包括平均值定理和极值原理。通过定理9.1阐述调和函数在圆心的值等于圆周上值的算术平均数;定理9.2证明调和函数在内部点无法达到最大值或最小值,违反最大模原理。此外,还介绍了极值原理的推论9.3,说明调和函数的边界行为。
摘要由CSDN通过智能技术生成

我们在第三章 § 4 § 4 §4 曾经介绍过解析函数与调和函数这两个概念之间的关系,即定理 3.18 与定理 3.19 .

本章我们将进一步研究调和函数的性质.我们会发现调和函数与解析函数有某些类似的性质.对于解析函数, 我们有柯西积分公式; 而对于调和函数,就有下面要介绍的与柯西积分公式性质相类似的泊松积分公式.解析函数有平均值定理和极值原理,调和函数也有相类似的结果.最后给出单位圆内和上半平面内狄利克雷 (Dirichlet) 问题的解.

为了方便起见, 我们有时将用 u ( z ) u(z) u(z) 来代替 u ( x , y ) u(x, y) u(x,y),就如同对于含几个变数的函数, 用 u ( p ) u(p) u(p) 来代替 u ( x 1 , x 2 , ⋯   , x n ) u\left(x_{1}, x_{2}, \cdots, x_{n}\right) u(x1,x2,,xn) 那样, 这时 p p p理解为其坐标为 ( x 1 , x 2 , ⋯   , x n ) \left(x_{1}, x_{2}, \cdots, x_{n}\right) (x1,x2,,xn)的点.


一、平均值定理

定理 9.1

如果函数 u ( z ) u(z) u(z) 在圆 ∣ ζ − z 0 ∣ < R \left|\zeta-z_{0}\right|<R ζz0<R内是一个调和函数, 在闭圆 ∣ ζ − z 0 ∣ ⩽ \left|\zeta-z_{0}\right| \leqslant ζz0 R R R上连续,则

u ( z 0 ) = 1 2 π ∫ 0 2 π u ( z 0 + R e i φ ) d φ . u\left(z_{0}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(z_{0}+R \mathrm{e}^{\mathrm{i} \varphi}\right) \mathrm{d} \varphi . u(z0)=2π10

  • 15
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值