复变函数论3-复变函数的积分4-4-解析函数与调和函数的关系2:设u(x,y)是在单连通区域D内的调和函数,则存在v=∫-[∂u/∂y]dx+[∂u/∂x]dy+C可使得f(z)=u+iv在D内解析

定理3.18和3.19阐述了复变函数解析性和调和函数之间的联系。如果u(x,y)是单连通区域D内的调和函数,那么存在v(x,y),使得u+iv是解析函数,其中v可以通过对u的偏导数进行积分得到。这表明解析函数的实部和虚部满足特定的调和关系。" 127258546,15243774,ROMA Connect API 流控技术详解,"['流控技术', 'API管理', '大数据', 'Java', '高并发']
摘要由CSDN通过智能技术生成

定理 3.18

f ( z ) = u ( x , y ) + i v ( x , y ) f(z)=u(x, y)+\mathrm{i} v(x, y) f(z)=u(x,y)+iv(x,y) 在区域 D D D 内解析,则在区域 D D D v ( x v(x v(x, y ) y) y) 必为 u ( x , y ) u(x, y) u(x,y)共轭调和函数.


现在接着上面的讨论. 反过来, 如果 u , v u, v u,v 是任意选取的在区域 D D D内的两个调和函数,则 u + i v u+\mathrm{i} v u+iv D D D 内就不一定解析. 要想 u + i v u+\mathrm{i} v u+iv 在区域 D D D 内解析, u u u v v v 还必须满足 C.R. 方程. 即 v v v 必须是 u u u 的共轭调和函数.

由此, 如已知一个解析函数的实部 u ( x , y ) u(x, y) u(x,y) (或虚部 v ( x , y ) v(x, y) v(x,y) )就可以求出它的虚部 v ( x , y ) v(x, y) v(x,y) (或实部 u ( x , y ) u(x, y) u(x,y) ).

假设 D D D 是一个单连通区域, u ( x , y ) u(x, y) u(x,y) 是区域 D D D 内的调和函数, 则 u ( x , y ) u(x, y) u(x,y) D D D 内有二阶连续偏导数,且

∂ 2 u ∂ x 2 + ∂ 2 u ∂ y 2 = 0. \cfrac{\partial^{2} u}{\partial x^{2}}+\cfrac{\partial^{2} u}{\partial y^{2}}=0 . x22u+

  • 15
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值