python-深度学习-如何简单地把数据集由voc格式转换到yolo格式?

该博客介绍了如何将PASCALVOC数据集转换为YOLO格式,包括解析XML标注文件,生成YOLO格式的txt文件,以及按比例划分训练集和验证集的txt文件。提供了Python脚本实现这一过程,涉及的主要步骤包括读取xml文件、转换坐标、写入txt文件和创建训练集、验证集列表。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、参考来源

PASCAL VOC 数据集转化为yolo数据集格式_CV-deeplearning的博客-CSDN博客_voc转yolo

二、背景

数据集主目录

class.txt文件的类别信息

 Annotations文件夹下的xml标注文件

图片文件目录

三、转换用到的py文件代码

# coding:utf-8

"""
自动化脚本使用指南:
1.创建和重命名文件夹
    将本py文件放在图片数据集主目录内
    把图片数据集放在JPEGImages文件夹,xml文件全放在Annotations文件夹
    如果没有class.txt文件(每一行代表一个类别),就要手动创建,放在主目录
    如果没有Imagesets或label_yolo文件夹,就要手动创建
2.执行本py文件
    在数据集路径下打开cmd窗口,执行python voc_to_yolo.py
    或者在pycharm中选定一个虚拟环境后run起来
3.程序执行的效果
    程序会自动转换Annotations文件夹下的xml文件为label_yolo文件夹下的txt文件
    程序会自动生成图片链接划分txt文件(train.txt,val.txt,trainval.txt)在Imageset文件夹下
4.其他注意事项
    由下面描述路径的方式可知,如果以命令行方式执行,想要修改文件夹名称,可在voc_to_yolo.py后指定相关参数
    当然也可以修改py文件,把各个路径参数的default值改成自己的目标值
    如果不想按2:8的比例划分数据集,也可以自己在本py文件中的imglist2file函数定义部分修改代码
"""

from __future__ import print_function

import argparse
import os
import random
import glob
import xml.etree.ElementTree as ET


def xml_reader(filename):
    """ Parse a PASCAL VOC xml file """
    tree = ET.parse(filename)
    size = tree.find('size')
    width = int(size.find('width').text)
    height = int(size.find('height').text)
    objects = []
    for obj in tree.findall('object'):
        obj_struct = {}
        obj_struct['name'] = obj.find('name').text
        bbox = obj.find('bndbox')
        obj_struct['bbox'] = [int(bbox.find('xmin').text),
                              int(bbox.find('ymin').text),
                              int(bbox.find('xmax').text),
                              int(bbox.find('ymax').text)]
        objects.append(obj_struct)
    return width, height, objects


def voc2yolo(filename):
    classes_dict = {}
    with open("classes.txt") as f:
        for idx, line in enumerate(f.readlines()):
            class_name = line.strip()
            classes_dict[class_name] = idx

    width, height, objects = xml_reader(filename)

    lines = []
    for obj in objects:
        x, y, x2, y2 = obj['bbox']
        class_name = obj['name']
        label = classes_dict[class_name]
        cx = (x2 + x) * 0.5 / width
        cy = (y2 + y) * 0.5 / height
        w = (x2 - x) * 1. / width
        h = (y2 - y) * 1. / height
        line = "%s %.6f %.6f %.6f %.6f\n" % (label, cx, cy, w, h)
        lines.append(line)

    txt_name = filename.replace(".xml", ".txt").replace("Annotations", "label_yolo")
    with open(txt_name, "w") as f:
        f.writelines(lines)


def get_image_list(image_dir, suffix=['jpg', 'jpeg', 'JPG', 'JPEG', 'png']):
    '''get all image path ends with suffix'''
    if not os.path.exists(image_dir):
        print("PATH:%s not exists" % image_dir)
        return []
    imglist = []
    for root, sdirs, files in os.walk(image_dir):
        if not files:
            continue
        for filename in files:
            filepath = os.path.join(root, filename) + "\n"
            if filename.split('.')[-1] in suffix:
                imglist.append(filepath)
    return imglist


def imglist2file(imglist):
    random.shuffle(imglist)  # 文件路径打乱
    trainval_list = imglist[:]  # 取所有图片为训练-测试集(总集合)
    train_list = imglist[int(len(imglist)/5):]  # 取后80%的图片为训练集
    valid_list = imglist[:int(len(imglist)/5)]  # 取前20%的图片为测试集
    with open(args.Imagesetpath + "//trainval_list.txt", "w") as f:
        f.writelines(trainval_list)
    with open(args.Imagesetpath + "//train.txt", "w") as f:
        f.writelines(train_list)
    with open(args.Imagesetpath + "//valid.txt", "w") as f:
        f.writelines(valid_list)


if __name__ == "__main__":
    # 定义路径
    parser = argparse.ArgumentParser()
    parser.add_argument('-xml', '--xmlpath', type=str, default="Annotations", help="voc数据集的Annotations文件夹路径")
    parser.add_argument('-image', '--Imagepath', type=str, default="JPEGImages", help="voc数据集的图片文件夹路径")
    parser.add_argument('-set', '--Imagesetpath', type=str, default="ImageSets", help="voc数据集的图片链接集路径")
    args = parser.parse_args()

    xml_path_list = glob.glob(args.xmlpath + "/*.xml")
    for xml_path in xml_path_list:
        voc2yolo(xml_path)

    # 获取图片文件夹下的所有图片的filepath
    imglist = get_image_list(args.Imagepath)

    # 将获取到的filepath写入链接图片以及可划分测试集、训练集的txt文件中
    imglist2file(imglist)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值