Bootstrap
(Efron, 1979)
假设条件:
- B与n同阶
- 有放回抽样,抽取样本量与原样本量相同
n out of N bootstrap
(Bickel,Gotze和van Zwet,1997)
子样本 n≪N(n=o(N))n\ll N (n = o(N))n≪N(n=o(N))
得到的估计θ^n\hat\theta_nθ^n的渐近性质 是基于n的
要想得到θ^N\hat\theta_Nθ^N的渐近性质,需要重缩放估计θ^n\hat\theta_nθ^n
BLB(Bag of little bootstrap)
Kleiner等人(2014)
bootstrap + subsampling,适用于并行运算
- 子抽样,从N个原始样本中抽取s个大小为n的子样本集
- 重抽样,从每个子样本集中,重放回抽取N个样本, 重复r次(从多项分布抽每个样本出现的次数,扩充为N个样本)。进行参数估计。
- 整合s个小样本的结果。
注意: n的选择–影响推断
s个子样本集, s的选取 — 计算资源和计算精度的权衡
子数据集重抽样r次
SDB(Subsampled double bootrap)
(Sengupta et al 2016)
与BLB类似,第二步中,r=1。
[2] Efron, B. (1979). Bootstrap Methods: Another Look at the Jackknife. The Annals of Statistics 7 1–26.
[3] Kleiner, A., Talwalkar, A., Sarkar, P. and Jordan, M. I. (2014). A Scalable Bootstrap for Massive Data. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 76 795–816.
[4] Sengupta, S., Volgushev, S., & Shao, X. (2016). A subsampled double bootstrap for massive data. Journal of the American Statistical Association, 111(515), 1222-1232.
文章探讨了Bootstrap抽样方法在处理大样本时的挑战,包括n与N的关系及其对估计的影响。Bickel等人的研究关注当n远小于N时的估计渐近性质,而Kleiner等人的工作提出了适用于并行计算的Bootstrap和子抽样结合的方法。SDB方法则简化了重抽样过程。这些方法旨在优化大规模数据的统计推断效率和准确性。
1099

被折叠的 条评论
为什么被折叠?



