截断正态分布的期望

文章探讨了条件期望的概念,并通过具体的例子展示了如何计算一个截断正态分布的期望值。利用概率密度函数和积分,解释了在Y服从标准正态分布且Y大于0的条件下,Y的期望值的求解过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

条件期望

E ( A ∣ B ) = ∫ Ω A d P ( ⋅ ∣ B ) = E ( A I B ) P ( B ) E(A|B)=\int_\Omega A dP(\cdot|B) =\frac{E(AI_B)}{P(B)} E(AB)=ΩAdP(B)=P(B)E(AIB)

截断正态分布的期望

假设 Y ∼ N ( 0 , σ 2 ) Y\sim N(0,\sigma^2) YN(0,σ2),则
E ( Y ∣ Y > 0 ) = ∫ 0 ∞ y σ ϕ ( y σ ) d y P ( Y > 0 ) = σ ∫ 0 ∞ y σ ϕ ( y σ ) d y σ P ( Y > 0 ) = σ ∫ 0 ∞ t ϕ ( t ) d t P ( Y > 0 ) = σ ∫ 0 ∞ − ϕ ′ ( t ) d t P ( Y > 0 ) = σ ϕ ( t ) ∣ 0 ∞ P ( Y > 0 ) E(Y|Y>0) =\frac{\int_0^\infty \frac{y}{\sigma} \phi(\frac{y}{\sigma})dy}{P(Y>0)} =\frac{\sigma\int_0^\infty\frac{y}{\sigma}\phi(\frac{y}{\sigma})d\frac{y}{\sigma}}{P(Y>0)} \\=\frac{\sigma\int_0^\infty t \phi(t)dt}{P(Y>0)}=\frac{\sigma\int_0^\infty-\phi'(t)dt}{P(Y>0)} =\frac{\sigma \phi(t)\big|_0^\infty}{P(Y>0)} E(YY>0)=P(Y>0)0σyϕ(σy)dy=P(Y>0)σ0σyϕ(σy)dσy=P(Y>0)σ0(t)dt=P(Y>0)σ0ϕ(t)dt=P(Y>0)σϕ(t) 0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值