Cauchy-Schwarz inequality 和 Holder inequality

Cauchy-Schwarz inequality

[ E ( ξ η ) ] 2 ≤ E ( ξ 2 ) E ( η 2 ) [E(\xi\eta)]^2\leq E(\xi^2)E(\eta^2) [E(ξη)]2E(ξ2)E(η2)
( ∑ a n b n ) 2 ≤ ∑ a n 2 ∑ b n 2 (\sum a_nb_n)^2\leq \sum a_n^2\sum b_n^2 (anbn)2an2bn2
∣ ∣ A T B ∣ ∣ 2 ≤ ∣ ∣ A ∣ ∣ 2 ∣ ∣ B ∣ ∣ 2 ||A^TB||^2\leq||A||^2||B||^2 ∣∣ATB2∣∣A2∣∣B2
[ ∫ a b f ( x ) g ( x ) d x ] 2 ≤ ∫ a b f 2 ( x ) d x ⋅ ∫ a b g 2 ( x ) d x [\int_a^b f(x)g(x)dx]^2\leq \int_a^b f^2(x)dx\cdot\int_a^b g^2(x)dx [abf(x)g(x)dx]2abf2(x)dxabg2(x)dx

Holder inequality

∫ a b ∣ f ( x ) g ( x ) ∣ d x ≤ [ ∫ a b ∣ f ( x ) ∣ p d x ] 1 p [ ∫ a b ∣ g ( x ) ∣ q d x ] 1 q , 1 p + 1 q = 1 \int_a^b|f(x)g(x)|dx\leq\bigg[\int_a^b|f(x)|^pdx\bigg]^{\frac{1}{p}}\bigg[\int_a^b|g(x)|^qdx\bigg]^{\frac{1}{q}},\quad \frac{1}{p}+\frac{1}{q}=1 abf(x)g(x)dx[abf(x)pdx]p1[abg(x)qdx]q1,p1+q1=1

∑ k = 1 n ∣ a k b k ∣ ≤ ( ∑ k = 1 n ∣ a k ∣ p ) 1 p ( ∑ k = 1 n ∣ b k ∣ q ) 1 q , 1 p + 1 q = 1 \sum_{k=1}^n|a_kb_k|\leq\bigg(\sum_{k=1}^n|a_k|^p\bigg)^{\frac{1}{p}}\bigg(\sum_{k=1}^n|b_k|^q\bigg)^{\frac{1}{q}},\quad \frac{1}{p}+\frac{1}{q}=1 k=1nakbk(k=1nakp)p1(k=1nbkq)q1,p1+q1=1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值