Cauchy-Schwarz inequality
[
E
(
ξ
η
)
]
2
≤
E
(
ξ
2
)
E
(
η
2
)
[E(\xi\eta)]^2\leq E(\xi^2)E(\eta^2)
[E(ξη)]2≤E(ξ2)E(η2)
(
∑
a
n
b
n
)
2
≤
∑
a
n
2
∑
b
n
2
(\sum a_nb_n)^2\leq \sum a_n^2\sum b_n^2
(∑anbn)2≤∑an2∑bn2
∣
∣
A
T
B
∣
∣
2
≤
∣
∣
A
∣
∣
2
∣
∣
B
∣
∣
2
||A^TB||^2\leq||A||^2||B||^2
∣∣ATB∣∣2≤∣∣A∣∣2∣∣B∣∣2
[
∫
a
b
f
(
x
)
g
(
x
)
d
x
]
2
≤
∫
a
b
f
2
(
x
)
d
x
⋅
∫
a
b
g
2
(
x
)
d
x
[\int_a^b f(x)g(x)dx]^2\leq \int_a^b f^2(x)dx\cdot\int_a^b g^2(x)dx
[∫abf(x)g(x)dx]2≤∫abf2(x)dx⋅∫abg2(x)dx
Holder inequality
∫ a b ∣ f ( x ) g ( x ) ∣ d x ≤ [ ∫ a b ∣ f ( x ) ∣ p d x ] 1 p [ ∫ a b ∣ g ( x ) ∣ q d x ] 1 q , 1 p + 1 q = 1 \int_a^b|f(x)g(x)|dx\leq\bigg[\int_a^b|f(x)|^pdx\bigg]^{\frac{1}{p}}\bigg[\int_a^b|g(x)|^qdx\bigg]^{\frac{1}{q}},\quad \frac{1}{p}+\frac{1}{q}=1 ∫ab∣f(x)g(x)∣dx≤[∫ab∣f(x)∣pdx]p1[∫ab∣g(x)∣qdx]q1,p1+q1=1
∑ k = 1 n ∣ a k b k ∣ ≤ ( ∑ k = 1 n ∣ a k ∣ p ) 1 p ( ∑ k = 1 n ∣ b k ∣ q ) 1 q , 1 p + 1 q = 1 \sum_{k=1}^n|a_kb_k|\leq\bigg(\sum_{k=1}^n|a_k|^p\bigg)^{\frac{1}{p}}\bigg(\sum_{k=1}^n|b_k|^q\bigg)^{\frac{1}{q}},\quad \frac{1}{p}+\frac{1}{q}=1 k=1∑n∣akbk∣≤(k=1∑n∣ak∣p)p1(k=1∑n∣bk∣q)q1,p1+q1=1