math
文章平均质量分 68
P_Y_L_U
这个作者很懒,什么都没留下…
展开
-
Cauchy-Schwarz inequality 和 Holder inequality
两个常用不等式的用法原创 2023-02-25 19:54:49 · 248 阅读 · 0 评论 -
矩阵的迹的性质总结
总结了一些常用矩阵的迹的性质。原创 2023-02-25 19:50:43 · 772 阅读 · 0 评论 -
截断正态分布的期望
截断正态分布的期望的推导过程原创 2023-02-25 19:40:58 · 814 阅读 · 0 评论 -
Gram-Schmidt orthogonalization 格拉姆-施密特正交化
Gram-Schmidt orthogonalization 格拉姆-施密特正交化Gram-Schmidt orthogonalization 格拉姆-施密特正交化Gram-Schmidt orthogonalization 格拉姆-施密特正交化在空间Sk\mathcal{S}^kSk中,向量组 α1\alpha_1α1, α2\alpha_2α2, …,αk\alpha_kαk 线性无关,寻找一组正交向量基 β1\beta_1β1, β2\beta_2β2,…, βk\beta_kβk,原创 2021-03-21 16:19:58 · 580 阅读 · 0 评论 -
Glivenko-Cantelli class & Donsker class
Glivenko-Cantelli class & Donsker classGlivenko-Cantelli classDonsker classX1,...,XnX_1,...,X_nX1,...,Xn是来自于可测空间 (X,A)(\mathcal{X},\mathcal{A})(X,A) 上概率分布 PPP 的随机样本。经验分布函数是观测值的离散均匀测度,记δx\delta_xδx 是 xxx 处的概率分布,则令 Pn=n−1∑i=1nδX\mathbb{P}_n = n^{-1}\原创 2020-10-14 00:59:38 · 1457 阅读 · 0 评论 -
Slutsky‘s Theorem
Slutsky's TheoremLet Xn,Yn{\displaystyle X_{n},Y_{n}}Xn,Yn be sequences of scalar/vector/matrix random elements. If Xn{\displaystyle X_{n}}Xn converges in distribution to a random element X{\displaystyle X}X and Yn{\displaystyle Y_{n}}Yn converges i原创 2020-10-11 15:20:40 · 4287 阅读 · 2 评论 -
矩阵求导
矩阵对标量求导: U=U(x,y) U=U(x,y) U = U(x,y) U is the matrix, x,y is the scalar.\ partial derivat\begin{equation} \frac{\partial |U|}{\partial x}=|U|tr(U^{-1}{\frac{\partial U}{\partial x..原创 2018-08-08 20:47:40 · 227 阅读 · 0 评论 -
Kullback-Leibler (KL) loss
Kullback-Leibler(KLKL\mathrm {KL}) loss (离散)For discrete probability distributions F(x)F(x)F(x) and G(x)G(x)G(x), the Kullback-Leibler (KLKL\mathrm {KL}) loss from F(x)F(x)F(x) to G(x)G(x)G(x) is def...转载 2018-08-30 15:26:33 · 2543 阅读 · 0 评论 -
Some formula
Stirling’s formula n!∼2πn−−−√(n/e)nn!∼2πn(n/e)n n! \sim \sqrt{2\pi n}(n/e)^n Sums of powers of integers Let S(k)n=1k+2k+...+nkSn(k)=1k+2k+...+nk S_n^{(k)} = 1^k+2^k + ...+n^k then S(k)n∼nk+1k+1...转载 2018-08-29 20:25:25 · 453 阅读 · 0 评论