Average Treatment Effect (平均因果效应)的估计方法

对 treatment effect 建模的几种方法总结

W W W: treatment index(exposure)
W i = { 1 , i f    t r e a t m e n t    ( 个体 i 在治疗组中 ) 0 , i f    c o n t r o l    ( 个体 i 在控制组中 ) W_i = \begin{cases} 1,& \rm if\;treatment \;(个体i在治疗组中)\\ 0, & \rm if \;control\;(个体i在控制组中) \end{cases} Wi={ 1,0,iftreatment(个体i在治疗组中)ifcontrol(个体i在控制组中)

X \bf X X: exposure covariates (协变量)

Y Y Y: outcome (响应变量)

数据: ( Y i , W i , X i ) (Y_i, W_i, {\bf X}_i) (Yi,Wi,Xi), i = 1 , . . . , n i=1,...,n i=1,...,n

  • 当个体 i i i 位于治疗组中,只能观测到 Y i 1 = Y i ( W i = 1 ) Y_{i1}= Y_i(W_i=1) Yi1=Yi(Wi=1);
  • 当个体 i i i 处于控制组中,只能观测到 Y i 0 = Y i ( W i = 0 ) Y_{i0}= Y_i(W_i=0) Yi0=Yi(Wi=0);

目的:估计平均治疗效应 τ \tau τ(average treatment effect)
τ = E { Y ( W = 1 ) } − E { Y ( W = 0 ) } = E ( Y 1 ) − E ( Y 0 ) ( 1 ) \tau = E\{Y(W=1)\} -E\{Y(W=0)\}=E(Y_1)-E(Y_0) \qquad\qquad (1) τ=E{ Y(W=1)}E{ Y(W=0)}=E(Y1)E(Y0)(1)
其中 E { Y ( W = 1 ) } E\{Y(W=1)\} E{ Y(W=1)}简写为 E ( Y 1 ) E(Y_1) E(Y1)


随机化实验

  • 治疗组个体与控制组中个体一一对应
  • 是否接受治疗与潜在响应是独立的,即 ( Y 0 , Y 1 )    ∥    ‾    W ( 2 ) (Y_0,Y_1)\underline{\;\|\;}\; W \qquad\qquad (2) (Y0,Y1)W(2)

n 1 = ∑ i = 1 n W i n_1 = \sum_{i=1}^n W_i n1=i=1nWi n 0 = n − n 1 n_0 = n-n_1 n0=nn1,则
Y ˉ 1 = 1 n 1 ∑ i = 1 n W i Y i , Y ˉ 0 = 1 n 0 ∑ i = 1 n ( 1 − W i ) Y i . \bar{Y}_1 = \frac{1}{n_1} \sum_{i=1}^n W_iY_i, \quad \bar{Y}_0 = \frac{1}{n_0} \sum_{i=1}^n (1-W_i)Y_i. Yˉ1=n11i=1nWiYi,Yˉ0=n01i=1n(1Wi)Yi.
平均治疗效应 τ \tau τ 的无偏估计为
τ ^ = Y ˉ 1 − Y ˉ 0 。 ( 3 ) \hat\tau = \bar{Y}_1-\bar{Y}_0。\qquad\qquad(3) τ^=Yˉ1Yˉ0(3)
此处有 E ( Y ∣ W = 1 ) = E { Y 1 W + Y 0 ( 1 − W ) ∣ W = 1 } = E ( Y 1 ∣ W = 1 ) = E ( Y 1 ) E(Y|W=1) = E\{Y_1W+Y_0(1-W)|W=1\}=E(Y_1|W=1)=E(Y_1) E(YW=1)=E{ Y1W+Y0(1W)W=1}=E(Y1W=1)=E(Y1), E ( Y ∣ W = 0 ) = W ( Y 0 ) E(Y|W=0)=W(Y_0) E(YW=0)=W(Y0) 成立。


观察型研究

数据中控制组和治疗组个体不在一一对应,且条件(2)不在成立,使得 E ( Y ∣ W = 1 ) ≠ E ( Y 1 ) E(Y|W=1)\neq E(Y_1) E(YW=1)=E(Y1) E ( Y ∣ W = 0 ) ≠ E ( Y 0 ) E(Y|W=0)\neq E(Y_0) E(YW=0)=E(Y0),因此,(3)式也就不再是 τ \tau τ的无偏估计了。

  • E ( Y ∣ W = 1 ) = E ( W Y 1 + ( 1 − W ) Y 0 ∣ W = 1 ) E(Y|W=1)=E(WY_1+(1-W)Y_0|W=1) E(YW=1)=E(WY1+(1W)Y0W=1)

协变量 X \bf X X可能与潜在响应和暴露(treatment exposure)有关, ( Y 0 , Y 1 )       ∥    ‾    W ∣ X . (Y_0,Y_1)\;\underline{\;\|\;}\;W|{\bf X}. (Y0,Y1)WX.

τ = E ( Y 1 ) − E ( Y 0 ) = E { E ( Y ∣ W = 1 , X ) } − E { E ( Y ∣ W = 0 , X ) } = E { E ( Y ∣ W = 1 , X ) − E ( Y ∣ W = 0 , X ) } . \begin{aligned}\tau &= E(Y_1)-E(Y_0) \\ &= E\{E(Y|W=1,{\bf X})\}-E\{E(Y|W=0,{\bf X})\} \\ &= E\{E(Y|W=1,{\bf X})-E(Y|W=0,{\bf X})\}.\end{aligned} τ=E(Y1)E(Y0)=E{ E(YW=1,X)}E{ E(YW=0,X)}=E{ E(YW=1,X)E(YW=0,X)}.

对响应变量的条件期望建模

假设 E ( Y ∣ W = 1 , X ) = m ( X , W = 1 ) E(Y|W=1,{\bf X}) = m({\bf X},W=1) E(YW=1,X)=m(X,W=1), E ( Y ∣ W = 0 , X ) = m ( X , W = 0 ) E(Y|W=0,{\bf X}) = m({\bf X},W=0) E(YW=0,X)=m(X,W=0), 则 平均治疗效应的估计为:
τ ^ = E { m ( X , W = 1 ) − m ( X , W = 0 ) } = 1 n ∑ i = 1 n { m i ( X , W = 1 ) − m i ( X , W = 0 ) } 。 \begin{aligned}\hat\tau &= E\{m({\bf X},W=1)-m({\bf X},W=0)\}\\ &=\frac{1}{n}\sum_{i=1}^n\Big\{m_i({\bf X},W=1)-m_i({\bf X},W=0)\Big\}\end{aligned}。 τ^=E{ m(X,W=1)m(X,W=0)}=n1i=1n{ mi(X,W=1)mi(X,W=0)}

  • 例1
    E ( Y ∣ X , W ) = m ( X , W ) = β 0 + W β 1 + X T β 2 E(Y|{\bf X},W) =m({\bf X},W)= \beta_0 + W\beta_1 + {\bf X}^T{\bm\beta}_2 E(YX,W)=m(X,W)=β0+Wβ1+X

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值