3.条件概率与独立性

本文深入探讨概率论的基础概念,包括条件概率的定义与计算示例,贝叶斯公式及其应用,全概率公式和独立事件的性质。通过具体的例子解释了如何在保险场景中应用这些理论来计算事件发生的概率。此外,还讨论了条件独立的概念及条件概率作为概率的合理性。

【README】

本文总结自《概率论基础教程》 by M.Ross ,墙裂推荐;


【3.2】条件概率

1)条件概率定义:

  【补充】条件概率计算示例 


【3.3】贝叶斯公式

1)通过第2个事件发生与否计算第1个事件的概率(非常重要*


2)优势比

 

 3)全概率公式(非常重要*)  

 4)贝叶斯公式(非常重要*

 


【3.4】独立事件

1)定义:如果已知 F 的发生并不影响 E 的发生的概率,则 E 和 F 就是独立的。

2)事件独立性(3个事件,多个事件,无限个事件)

 3)事件独立性举例

  1. 例1: 从一副52张的扑克牌中任取1张,以A记事件“取到黑桃”,以B记事件“取到爱司”,则因为,而AB表示“取到黑桃爱司”,故,因为,所以根据定义A与B相互独立。
  2. 例2:考虑有三个小孩的家庭,并设所有8种情况bbb,bbg,bgb,gbb,bgg,gbg,ggb,ggg是等可能的,其中b表示男孩,g表示女孩,以A记事件“家中男女孩都有”,以B记事件“家中至多一个女孩”,则因为,而AB表示“家中恰有一个女孩”,故,所以A与B相互独立。

【3.5】 条件概率P(*|F) 是概率

1)命题5.1 证明了条件概率P(E|F) 满足概率的3个公理。

2 )条件概率的转换计算方式(见本文末位例题

3)条件独立

 

 Todo: 找出事件 E1 E2 F 满足 条件独立?

【例】条件独立举例

【例】 条件概率计算

保险公司认为人可以分为两类,一类易出事故,另一类则不易出事故。
统计表明,一个易出事故者在一年内发生事故的概率是0.4,对不易出事故的人是0.2.
若假定第一类人占总人口比例为 30%,现在有一个新人投保。

  • 1)问题1:该人在投保后一年内出事故的概率有多大?
  • 2)问题2:假设新人在购买保单后一年内出了事故,那他属于易出事故者的概率是多大?
  • 3)问题3:若已知新保险客户在第一年已出事故,则他在第二年又出事故的条件概率是多大?

问题的直观理解:投保人出事故,可能是易出事故者出事故,也可能是不易出事故者出事故,因为两类人都存在出事故的可能性。

  •  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值