概率论:条件概率与独立性

这篇博客探讨了概率论中独立事件的概念,指出如果两个事件AB独立,则A'B, AB', A'B'也独立。强调了证明多个事件独立时需要满足的所有条件,并通过例子说明即使AB, AC, BC两两独立,ABC仍可能不独立。此外,还提到了在大量重复实验中,当事件发生的次数很大且概率很小时,可以使用泊松定理简化计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

定义:

 若AB独立,那么A'B,AB',A'B'就都独立了。有一个不独立,那其他的就都不独立。

简单证明:

来个小例题,主要学标准写法:

有限多个事件的独立性:

 注意:4个条件都要满足才叫ABC相互独立,前三个不能推出第四个,因此只证明了3家伙两两独立是不够的,最后那个式子也要成立。

也就是说,可能AB,AC,BC都独立,但ABC不独立。举个例子:

假如有n个事件要证相互独立,那就要先证两两独立,在三三独立,四四独立·····直到N独立:

 

 总数怎么算的?加上Cn0,Cn1就是2^n,再减掉n和1就可以了。

贝努力概型:

贝努力实验是什么?:

就是升级版随机试验,结果只有两种的那种。

定理是啥呢?:

 二项式展开可还行?最后的和相当于1^n,所以是1.

有的时候这个式子的n特别大,p又特别小,计算非常困难,怎么办呢?泊松定理!:

 平时在什么时候用呢?N很大,p很小,而n*p比较正常的时候

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值