(1) R-CNN:
Region CNN 其实就是基于候选区域的目标检测。基本框架如下:
首选选定region proposals (方法大多为:Selective search ,edge box)àCNN 网络进行特征提取àSVM进行分类àBB进行回归,返回regions 以及类别
(2) SPP
Spatial pyramid pooling 它是在CNN的基础上做一些改动,正如它的定义,金字塔式的池化,SPP代替了CNN中POOL5层,换成SPPpooling层。传统CNN中pooling层的滑动窗口是一定的,但在SPP中可以看到,它的pooling层是分层的,正如SPP自身的含义——金字塔式池化一样,它每层pooling bins的大小是可变的,它的大小是个输入图像的大小成比例的;同时pooling bins的个数是确定的,这就相当于多尺度的poolingSPPpooling的特点:他的pooling是分层的,每一层的poolingbins 的大小是可以变化的。Pooling bins 的数量是一定的。传统的CNN网络是只能接受大小统一的图片,实际上,在传统CNN网络结构中,卷积层是不需要大小统一的图片。因此,SPP就在传统的CNN网络结构中的最后一层卷积