RCNN +SPP+fast-RCNN+faster—RCNN浅显的初步理解

本文介绍了RCNN系列的目标检测方法,包括R-CNN、SPP-Net、Fast R-CNN和Faster R-CNN。SPP技术允许输入图像大小不一,保持特征信息。Fast R-CNN通过多任务损失函数加速训练和测试。Faster R-CNN引入RPN网络,实现端到端的候选框生成和检测。此外,还简单概述了VGG16网络的结构和卷积操作。
摘要由CSDN通过智能技术生成

(1)  R-CNN:

Region CNN 其实就是基于候选区域的目标检测。基本框架如下:


首选选定region proposals (方法大多为:Selective search ,edge box)àCNN 网络进行特征提取àSVM进行分类àBB进行回归,返回regions 以及类别

(2)  SPP

Spatial pyramid pooling 它是在CNN的基础上做一些改动,正如它的定义,金字塔式的池化,SPP代替了CNN中POOL5层,换成SPPpooling层。传统CNN中pooling层的滑动窗口是一定的,但在SPP中可以看到,它的pooling层是分层的,正如SPP自身的含义——金字塔式池化一样,它每层pooling  bins的大小是可变的,它的大小是个输入图像的大小成比例的;同时pooling bins的个数是确定的,这就相当于多尺度的poolingSPPpooling的特点:他的pooling是分层的,每一层的poolingbins 的大小是可以变化的。Pooling bins 的数量是一定的。传统的CNN网络是只能接受大小统一的图片,实际上,在传统CNN网络结构中,卷积层是不需要大小统一的图片。因此,SPP就在传统的CNN网络结构中的最后一层卷积

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值