大语言模型(LLM)的研究方向主要涵盖以下几个方面:
1. 模型架构改进
- 目标:提高模型的性能和通用性,减少计算资源消耗。
- 方法:
- 混合专家模型(Mixture of Experts, MoE):通过让不同的专家网络处理不同类型的数据,提高模型效率。
- 稀疏注意力机制(Sparse Attention Mechanism):减少计算量,同时保持模型的性能。
- 可变形卷积(Deformable Convolution):增强模型的灵活性,使其更好地处理复杂的模式。
2. 训练数据质量
- 目标:提高模型的训练效果和泛化能力。
- 方法:
- 数据清洗和增强:去除噪声数据,进行数据扩充和增强。
- 多语言、多领域数据:扩展训练数据的多样性,提升模型的多任务处理能力。
- 合成数据生成:利用生成模型生成高质量的数据,增强训练集。
3. 优化训练算法
- 目标:提升训练速度和效果,降低资源消耗。
- 方法:
- 分布式训练:利用多机多卡训练,提高训练效率。
- 自监督学习(Self-Supervised Learning):减少对人工标注数据的依赖,提高模型的学习效率。
- 对比学习(Contrastive Learning):通过比较不同数据的相似性,提升模型的特征表示能力。