组合变权赋权方法,基于AHP和改进CRITIC计算主客观权重,引入指标劣化度构造变权函数对综合权重进行修正,还方法可以捕捉指标时序的劣化程度,实现数据的有效跟踪,评价更加合理。
ID:57500675399877373
华南理工社畜2
组合变权赋权方法在数据分析和决策支持领域中起着重要作用。本文将介绍一种基于AHP和改进CRITIC的方法,用于计算主客观权重,并引入指标劣化度构造变权函数对综合权重进行修正。通过这种方法,可以捕捉指标时序的劣化程度,实现数据的有效跟踪,从而实现更加合理的评价。
在数据分析和决策支持中,常常需要综合考虑多个指标来进行权重分配。而权重的准确性对于评价结果的可靠性至关重要。为了解决这个问题,我们引入了组合变权赋权方法。该方法通过结合AHP和改进CRITIC的优势,能够有效地计算出主客观权重。
首先,我们使用AHP方法来计算主观权重。AHP方法是一种常用的层次分析方法,它通过构建层次结构,对指标之间的相对重要性进行比较。在这个方法中,我们需要专家的主观判断来对指标进行两两比较,并给出权重值。通过一系列的计算和归一化处理,我们可以得到主观权重。
然而,由于主观权重受到专家个人主观意见的影响,可能存在一定的主观偏差。为了进一步提高权重的准确性,我们引入了改进CRITIC方法。CRITIC方法是一种基于信息熵的权重计算方法,它能够通过对数据的统计分析得到客观权重。在这个方法中,我们将指标的历史数据进行分析,计算指标的劣化度,然后构造变权函数对权重进行修正。通过这种方法,我们能够更加准确地评估指标的重要性,并得到客观权重。
综合主客观权重,我们可以得到综合权重。然而,在实际应用中,指标的劣化程度可能随着时间的推移而变化。为了能够有效地跟踪数据的变化,我们引入了指标劣化度。指标劣化度反映了指标在时序上的变化趋势,通过对劣化度进行分析,我们可以更好地理解指标的演变规律,并进行相应的调整。通过引入指标劣化度构造变权函数,我们可以对综合权重进行动态修正,从而更加准确地评价数据。
综上所述,组合变权赋权方法基于AHP和改进CRITIC的思想,通过计算主客观权重,引入指标劣化度构造变权函数,实现了数据的有效跟踪和更加合理的评价。该方法具有较高的准确性和实用性,可以在数据分析和决策支持中起到重要的作用。通过应用该方法,我们能够更好地理解数据的变化趋势,并作出更加明智的决策。
以上相关代码,程序地址:http://coupd.cn/675399877373.html