我国高分辨率对地观测系统重大专项已全面启动,高空间、高光谱、高时间分辨率和宽地面覆盖于一体的全球天空地一体化立体对地观测网逐步形成,将成为保障国家安全的基础性和战略性资源。随着小卫星星座的普及,对地观测已具备多次以上的全球覆盖能力,遥感影像也不断被更深入的应用于矿产勘探、精准农业、城市规划、林业测量、军事目标识别和灾害评估。未来10年全球每天获取的观测数据将超过10PB,遥感大数据时代已然来临。
另一方面,随着无人机自动化能力的逐步升级,它被广泛的应用于多种领域,如航拍、农业、植保、灾难评估、救援、测绘、电力巡检等。但同时由于无人机飞行高度低、获取目标类型多、以及环境复杂等因素使得对无人机获取的数据处理越来越复杂。
从CNN到Transformer:基于PyTorch的遥感影像、无人机影像的地物分类、目标检测、语义分割和点云分类
专题一:深度卷积网络知识详解
深度学习在遥感图像识别中的范式和问题
深度学习的历史发展历程
机器学习,深度学习等任务的基本处理流程
卷积神经网络的基本原理
卷积运算的原理和理解
池化操作,全连接层,以及分类器的作用
BP反向传播算法的理解
CNN模型代码详解
特征图,卷积核可视化分析



专题二:PyTorch应用与实践(遥感图像场景分类)