# HDU 6024 女生专场 Building Shops 【简单dp】

Building Shops
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 701 Accepted Submission(s): 265

Problem Description
HDU’s n classrooms are on a line ,which can be considered as a number line. Each classroom has a coordinate. Now Little Q wants to build several candy shops in these n classrooms.

The total cost consists of two parts. Building a candy shop at classroom i would have some cost ci. For every classroom P without any candy shop, then the distance between P and the rightmost classroom with a candy shop on P’s left side would be included in the cost too. Obviously, if there is a classroom without any candy shop, there must be a candy shop on its left side

Now Little Q wants to know how to build the candy shops with the minimal cost. Please write a program to help him.

Input
The input contains several test cases, no more than 10 test cases.
In each test case, the first line contains an integer n(1≤n≤3000), denoting the number of the classrooms.
In the following n lines, each line contains two integers xi,ci(−109≤xi,ci≤109), denoting the coordinate of the i-th classroom and the cost of building a candy shop in it.
There are no two classrooms having same coordinate.

Output
For each test case, print a single line containing an integer, denoting the minimal cost.

Sample Input

1 2
2 3
3 4

1 7
3 1
5 10
6 1

Sample Output

11

Source
2017中国大学生程序设计竞赛 - 女生专场

1：在第i个教室建超市，费用因为ci

2：没有建糖果屋的教室的费用为它与左边离它最近的糖果屋的距离

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#define INF 0x3f3f3f3f
#define Max 3010
typedef pair<ll ,ll > p;
p  a[Max];
ll dp[Max][2];
bool cmp(p x,p y)
{
return x.first<y.first;
}
int main(){
int n;
while(~scanf("%d",&n))
{
for(int i=0;i<n;i++)
scanf("%lld%lld",&a[i].first,&a[i].second);
sort(a,a+n,cmp);
dp[0][0]=INF;
dp[0][1]=a[0].second;
for(int i=1;i<n;i++)
{
ll sum=0;
dp[i][1]=min(dp[i-1][0],dp[i-1][1])+a[i].second;
dp[i][0]=INF;
for(int j=i-1;j>=0;j--)
{
sum+=(i-j)*(a[j+1].first-a[j].first);
dp[i][0]=min(dp[i][0],dp[j][1]+sum);
}
}
printf("%lld\n",min(dp[n-1][0],dp[n-1][1]));
}
return 0;
}