机器学习笔记 - Moore-Penrose 伪逆

本文介绍了Moore-Penrose伪逆在机器学习中解决线性回归问题的作用,特别是在数据集有冗余或线性相关性时。通过奇异值分解,我们可以计算矩阵的伪逆,并用Python的NumPy库进行演示。这个方法广泛应用于各种机器学习任务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在机器学习中,伪逆(Pseudoinverse)是一种用于求解线性回归问题的数学工具。当数据集存在冗余或线性相关性时,矩阵可能不可逆,而伪逆则提供了一种逼近解的方法。本文将介绍Moore-Penrose伪逆,它是一种常用的伪逆求解方法。

Moore-Penrose伪逆是由E. H. Moore和A. Penrose于1920年和1955年分别独立提出的。它是一种通过将矩阵分解为奇异值分解(Singular Value Decomposition, SVD)的形式来求解矩阵的伪逆的方法。奇异值分解将矩阵分解为三个矩阵的乘积:A = UΣVT,其中U和V是正交矩阵,Σ是对角矩阵。Moore-Penrose伪逆可以通过奇异值分解来表示为A+ = VΣ+UT,其中Σ^+是Σ的伪逆。

下面我们将使用Python来演示如何使用Moore-Penrose伪逆进行线性回归。

首先,我们需要导入必要的库,如NumPy:

import numpy as np

接下来,我们定义一个包含输入特征的矩阵X和相应的目标变量的向量y。这里我们使用一个简单的示例来说明:</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值