在机器学习中,伪逆(Pseudoinverse)是一种用于求解线性回归问题的数学工具。当数据集存在冗余或线性相关性时,矩阵可能不可逆,而伪逆则提供了一种逼近解的方法。本文将介绍Moore-Penrose伪逆,它是一种常用的伪逆求解方法。
Moore-Penrose伪逆是由E. H. Moore和A. Penrose于1920年和1955年分别独立提出的。它是一种通过将矩阵分解为奇异值分解(Singular Value Decomposition, SVD)的形式来求解矩阵的伪逆的方法。奇异值分解将矩阵分解为三个矩阵的乘积:A = UΣVT,其中U和V是正交矩阵,Σ是对角矩阵。Moore-Penrose伪逆可以通过奇异值分解来表示为A+ = VΣ+UT,其中Σ^+是Σ的伪逆。
下面我们将使用Python来演示如何使用Moore-Penrose伪逆进行线性回归。
首先,我们需要导入必要的库,如NumPy:
import numpy as np
接下来,我们定义一个包含输入特征的矩阵X和相应的目标变量的向量y。这里我们使用一个简单的示例来说明:</